首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
现状及发展   8篇
研究方法   2篇
综合类   27篇
  2016年   2篇
  2012年   3篇
  2011年   4篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1969年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
2.
T Langer  C Lu  H Echols  J Flanagan  M K Hayer  F U Hartl 《Nature》1992,356(6371):683-689
The main stress proteins of Escherichia coli function in an ordered protein-folding reaction. DnaK (heat-shock protein 70) recognizes the folding polypeptide as an extended chain and cooperates with DnaJ in stabilizing an intermediate conformational state lacking ordered tertiary structure. Dependent on GrpE and ATP hydrolysis, the protein is then transferred to GroEL (heat-shock protein 60) which acts catalytically in the production of the native state. This sequential mechanism of chaperone action may represent an important pathway for the folding of newly synthesized polypeptides.  相似文献   
3.
Leonhard K  Stiegler A  Neupert W  Langer T 《Nature》1999,398(6725):348-351
The AAA domain, a conserved Walker-type ATPase module, is a feature of members of the AAA family of proteins, which are involved in many cellular processes, including vesicular transport, organelle biogenesis, microtubule rearrangement and protein degradation. The function of the AAA domain, however, has not been explained. Membrane-anchored AAA proteases of prokaryotic and eukaryotic cells comprise a subfamily of AAA proteins that have metal-dependent peptidase activity and mediate the degradation of non-assembled membrane proteins. Inactivation of an orthologue of this protease family in humans causes neurodegeneration in hereditary spastic paraplegia. Here we investigate the AAA domain of the yeast protein Yme1, a subunit of the iota-AAA protease located in the inner membrane of mitochondria. We show that Yme1 senses the folding state of solvent-exposed domains and specifically degrades unfolded membrane proteins. Substrate recognition and binding are mediated by the amino-terminal region of the AAA domain. The purified AAA domain of Yme1 binds unfolded polypeptides and suppresses their aggregation. Our results indicate that the AAA domain of Ymel has a chaperone-like activity and suggest that the AAA domains of other AAA proteins may have a similar function.  相似文献   
4.
Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum computation. Dynamical gates have been proposed in the context of trapped ions; however, geometric phase gates (which change only the phase of the physical qubits) offer potential practical advantages because they have higher intrinsic resistance to certain small errors and might enable faster gate implementation. Here we demonstrate a universal geometric pi-phase gate between two beryllium ion-qubits, based on coherent displacements induced by an optical dipole force. The displacements depend on the internal atomic states; the motional state of the ions is unimportant provided that they remain in the regime in which the force can be considered constant over the extent of each ion's wave packet. By combining the gate with single-qubit rotations, we have prepared ions in an entangled Bell state with 97% fidelity-about six times better than in a previous experiment demonstrating a universal gate between two ion-qubits. The particular properties of the gate make it attractive for a multiplexed trap architecture that would enable scaling to large numbers of ion-qubits.  相似文献   
5.
6.
Synthetic antisense oligonucleotides have been used to dissect gene function in vitro. Technical difficulties prevented the use of this approach for investigating the effect of gene products in vivo. Here we report the use of local delivery of antisense c-myb oligonucleotide to suppress intimal accumulation of rat carotid arterial smooth muscle cells. Our results suggest that antisense oligonucleotides can be used to define the in vivo biological role of specific macromolecules in the blood vessel wall and could potentially serve as a new class of therapeutic agents for cardiovascular disorders.  相似文献   
7.
All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.  相似文献   
8.
9.
Deterministic quantum teleportation of atomic qubits   总被引:2,自引:0,他引:2  
Quantum teleportation provides a means to transport quantum information efficiently from one location to another, without the physical transfer of the associated quantum-information carrier. This is achieved by using the non-local correlations of previously distributed, entangled quantum bits (qubits). Teleportation is expected to play an integral role in quantum communication and quantum computation. Previous experimental demonstrations have been implemented with optical systems that used both discrete and continuous variables, and with liquid-state nuclear magnetic resonance. Here we report unconditional teleportation of massive particle qubits using atomic (9Be+) ions confined in a segmented ion trap, which aids individual qubit addressing. We achieve an average fidelity of 78 per cent, which exceeds the fidelity of any protocol that does not use entanglement. This demonstration is also important because it incorporates most of the techniques necessary for scalable quantum information processing in an ion-trap system.  相似文献   
10.
R Raisman  M Briley  S Z Langer 《Nature》1979,281(5727):148-150
The discovery of high-affinity binding sites for psychoactive drugs such as benzodiazepines, opiates and neuroleptics has opened up new approaches to the study of these drugs and their mechanisms of action. Although most tricyclic antidepressants inhibit neuronal uptake of noradrenaline and serotonin, their mechanism of action remains unclear. Changes in the sensitivity of the beta-receptor after chronic tricyclic antidepressant treatment suggest that they modulate noradrenergic neurotransmission. Tricyclic antidepressants also act directly on cholinergic, histaminergic, alpha-adrenergic and serotonergic receptors. It is not clear, however, which, if any, of these effects are related to the primary antidepressant effect or whether they are simply responsible for some of the side effects. We have thus investigated the possibility that specific binding sites for tricyclic antidepressants exist in the central nervous system. So far, binding studies using 3H-labelled tricyclic antidepressant drugs have only detected binding to histaminergic H2 and cholinergic muscarinic receptors and low-affinity binding. We demonstrate here a population of specific high-affinity binding sites for 3H-imipramine on brain membranes which may be responsible for the antidepressant effects of these drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号