首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
现状及发展   3篇
研究方法   2篇
综合类   8篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2005年   3篇
  2004年   1篇
排序方式: 共有13条查询结果,搜索用时 171 毫秒
1.
Cysteinyl leukotrienes are key mediators in inflammation and have an important role in acute and chronic inflammatory diseases of the cardiovascular and respiratory systems, in particular bronchial asthma. In the biosynthesis of cysteinyl leukotrienes, conversion of arachidonic acid forms the unstable epoxide leukotriene A4 (LTA4). This intermediate is conjugated with glutathione (GSH) to produce leukotriene C4 (LTC4) in a reaction catalysed by LTC4 synthase: this reaction is the key step in cysteinyl leukotriene formation. Here we present the crystal structure of the human LTC4 synthase in its apo and GSH-complexed forms to 2.00 and 2.15 A resolution, respectively. The structure reveals a homotrimer, where each monomer is composed of four transmembrane segments. The structure of the enzyme in complex with substrate reveals that the active site enforces a horseshoe-shaped conformation on GSH, and effectively positions the thiol group for activation by a nearby arginine at the membrane-enzyme interface. In addition, the structure provides a model for how the omega-end of the lipophilic co-substrate is pinned at one end of a hydrophobic cleft, providing a molecular 'ruler' to align the reactive epoxide at the thiol of glutathione. This provides new structural insights into the mechanism of LTC4 formation, and also suggests that the observed binding and activation of GSH might be common for a family of homologous proteins important for inflammatory and detoxification responses.  相似文献   
2.
Many ion channels are regulated by lipids, but prominent motifs for lipid binding have not been identified in most ion channels. Recently, we reported that phospholipase Cgamma1 (PLC-gamma1) binds to and regulates TRPC3 channels, components of agonist-induced Ca2+ entry into cells. This interaction requires a domain in PLC-gamma1 that includes a partial pleckstrin homology (PH) domain-a consensus lipid-binding and protein-binding sequence. We have developed a gestalt algorithm to detect hitherto 'invisible' PH and PH-like domains, and now report that the partial PH domain of PLC-gamma1 interacts with a complementary partial PH-like domain in TRPC3 to elicit lipid binding and cell-surface expression of TRPC3. Our findings imply a far greater abundance of PH domains than previously appreciated, and suggest that intermolecular PH-like domains represent a widespread signalling mode.  相似文献   
3.
4.
BRCA1 and BRCA2 are important for DNA double-strand break repair by homologous recombination, and mutations in these genes predispose to breast and other cancers. Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in base excision repair, a key pathway in the repair of DNA single-strand breaks. We show here that BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis. This seems to be because the inhibition of PARP leads to the persistence of DNA lesions normally repaired by homologous recombination. These results illustrate how different pathways cooperate to repair damage, and suggest that the targeted inhibition of particular DNA repair pathways may allow the design of specific and less toxic therapies for cancer.  相似文献   
5.
In metazoans, the Ras-Raf-MEK (mitogen-activated protein-kinase kinase)-ERK (extracellular signal-regulated kinase) signalling pathway relays extracellular stimuli to elicit changes in cellular function and gene expression. Aberrant activation of this pathway through oncogenic mutations is responsible for a large proportion of human cancer. Kinase suppressor of Ras (KSR) functions as an essential scaffolding protein to coordinate the assembly of Raf-MEK-ERK complexes. Here we integrate structural and biochemical studies to understand how KSR promotes stimulatory Raf phosphorylation of MEK (refs 6, 7). We show, from the crystal structure of the kinase domain of human KSR2 (KSR2(KD)) in complex with rabbit MEK1, that interactions between KSR2(KD) and MEK1 are mediated by their respective activation segments and C-lobe αG helices. Analogous to BRAF (refs 8, 9), KSR2 self-associates through a side-to-side interface involving Arg?718, a residue identified in a genetic screen as a suppressor of Ras signalling. ATP is bound to the KSR2(KD) catalytic site, and we demonstrate KSR2 kinase activity towards MEK1 by in vitro assays and chemical genetics. In the KSR2(KD)-MEK1 complex, the activation segments of both kinases are mutually constrained, and KSR2 adopts an inactive conformation. BRAF allosterically stimulates the kinase activity of KSR2, which is dependent on formation of a side-to-side KSR2-BRAF heterodimer. Furthermore, KSR2-BRAF heterodimerization results in an increase of BRAF-induced MEK phosphorylation via the KSR2-mediated relay of a signal from BRAF to release the activation segment of MEK for phosphorylation. We propose that KSR interacts with a regulatory Raf molecule in cis to induce a conformational switch of MEK, facilitating MEK's phosphorylation by a separate catalytic Raf molecule in trans.  相似文献   
6.
Bieling P  Laan L  Schek H  Munteanu EL  Sandblad L  Dogterom M  Brunner D  Surrey T 《Nature》2007,450(7172):1100-1105
The microtubule cytoskeleton is essential to cell morphogenesis. Growing microtubule plus ends have emerged as dynamic regulatory sites in which specialized proteins, called plus-end-binding proteins (+TIPs), bind and regulate the proper functioning of microtubules. However, the molecular mechanism of plus-end association by +TIPs and their ability to track the growing end are not well understood. Here we report the in vitro reconstitution of a minimal plus-end tracking system consisting of the three fission yeast proteins Mal3, Tip1 and the kinesin Tea2. Using time-lapse total internal reflection fluorescence microscopy, we show that the EB1 homologue Mal3 has an enhanced affinity for growing microtubule end structures as opposed to the microtubule lattice. This allows it to track growing microtubule ends autonomously by an end recognition mechanism. In addition, Mal3 acts as a factor that mediates loading of the processive motor Tea2 and its cargo, the Clip170 homologue Tip1, onto the microtubule lattice. The interaction of all three proteins is required for the selective tracking of growing microtubule plus ends by both Tea2 and Tip1. Our results dissect the collective interactions of the constituents of this plus-end tracking system and show how these interactions lead to the emergence of its dynamic behaviour. We expect that such in vitro reconstitutions will also be essential for the mechanistic dissection of other plus-end tracking systems.  相似文献   
7.
Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.  相似文献   
8.
The problem of establishing intensional criteria to demarcate science from non-science, and in particular science from pseudoscience, received a great amount of attention in the 20th century philosophy of science. It remains unsolved. This article compares demarcation criteria found in Marcus Tullius Cicero’s rejection of genethliac astrology and other pseudo-divinatory techniques in his De divinatione (44 BCE) with criteria advocated by a broad selection of modern philosophers of science and other specialists in science studies. Remarkable coincidences across two millennia are found on five basic criteria, which hints at a certain historical stability of some of the most fundamental features of a concept of “science” broadly construed.  相似文献   
9.
Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disorder and the majority of ALS is sporadic, where misfolding and aggregation of Cu/Zn-superoxide dismutase (SOD1) is a feature shared with familial mutant-SOD1 cases. ALS is characterized by progressive neurospatial spread of pathology among motor neurons, and recently the transfer of extracellular, aggregated mutant SOD1 between cells was demonstrated in culture. However, there is currently no evidence that uptake of SOD1 into cells initiates neurodegenerative pathways reminiscent of ALS pathology. Similarly, whilst dysfunction to the ER–Golgi compartments is increasingly implicated in the pathogenesis of both sporadic and familial ALS, it remains unclear whether misfolded, wildtype SOD1 triggers ER–Golgi dysfunction. In this study we show that both extracellular, native wildtype and mutant SOD1 are taken up by macropinocytosis into neuronal cells. Hence uptake does not depend on SOD1 mutation or misfolding. We also demonstrate that purified mutant SOD1 added exogenously to neuronal cells inhibits protein transport between the ER–Golgi apparatus, leading to Golgi fragmentation, induction of ER stress and apoptotic cell death. Furthermore, we show that extracellular, aggregated, wildtype SOD1 also induces ER–Golgi pathology similar to mutant SOD1, leading to apoptotic cell death. Hence extracellular misfolded wildtype or mutant SOD1 induce dysfunction to ER–Golgi compartments characteristic of ALS in neuronal cells, implicating extracellular SOD1 in the spread of pathology among motor neurons in both sporadic and familial ALS.  相似文献   
10.
Acute mountain sickness (AMS) is a neurological disorder that typically affects mountaineers who ascend to high altitude. The symptoms have traditionally been ascribed to intracranial hypertension caused by extracellular vasogenic edematous brain swelling subsequent to mechanical disruption of the blood–brain barrier in hypoxia. However, recent diffusion-weighted magnetic resonance imaging studies have identified mild astrocytic swelling caused by a net redistribution of fluid from the “hypoxia-primed” extracellular space to the intracellular space without any evidence for further barrier disruption or additional increment in brain edema, swelling or pressure. These findings and the observation of minor vasogenic edema present in individuals with and without AMS suggest that the symptoms are not explained by cerebral edema. This has led to a re-evaluation of the relevant pathogenic events with a specific focus on free radicals and their interaction with the trigeminovascular system. (Part of a multi-author review.)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号