首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
现状及发展   1篇
综合类   1篇
  2005年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Colloidal suspensions that form periodic self-assembling structures on sub-micrometre scales are of potential technological interest; for example, three-dimensional arrangements of spheres in colloidal crystals might serve as photonic materials, intended to manipulate light. Colloidal particles with non-spherical shapes (such as rods and plates) are of particular interest because of their ability to form liquid crystals. Nematic liquid crystals possess orientational order; smectic and columnar liquid crystals additionally exhibit positional order (in one or two dimensions respectively). However, such positional ordering may be inhibited in polydisperse colloidal suspensions. Here we describe a suspension of plate-like colloids that shows isotropic, nematic and columnar phases on increasing the particle concentration. We find that the columnar two-dimensional crystal persists for a polydispersity of up to 25%, with a cross-over to smectic-like ordering at very high particle concentrations. Our results imply that liquid crystalline order in synthetic mesoscopic materials may be easier to achieve than previously thought.  相似文献   
2.
Missense mutations resulting in type 1 lissencephaly   总被引:1,自引:0,他引:1  
Proper human brain formation is dependent upon the integrated activity of multiple genes. Malfunctioning of key proteins results in brain developmental abnormalities. Mutation(s) in the LIS1 gene or the X-linked gene doublecortin (DCX) results in a spectrum of disorders including lissencephaly, or smooth brain, and subcortical band heterotopia, or doublecortex. Here, we will focus on a particular subset of missense mutations in these two genes and their effect on protein structure and function.Received 4 August 2004; received after revision 26 September 2004; accepted 5 October 2004  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号