首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
现状及发展   1篇
综合类   1篇
  2011年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult, because of the nonlinear interaction of excitation waves in a heterogeneous anatomical substrate. In the absence of a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation. Here we establish the relationship between the response of the tissue to an electric field and the spatial distribution of heterogeneities in the scale-free coronary vascular structure. We show that in response to a pulsed electric field, E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E) and a characteristic time, τ, for tissue depolarization that obeys the power law τ?∝?E(α). These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore, efficient termination of fibrillation. Using this control strategy, we demonstrate low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques.  相似文献   
2.
The aberrations of cholinesterase (ChE) genes and the variation of ChE activity in cancerous tissues prompted us to investigate the expression of ChEs in colorectal carcinoma. The study of 55 paired specimens of healthy (HG) and cancerous gut (CG) showed that acetylcholinesterase (AChE) activity fell by 32% and butyrylcholinesterase (BuChE) activity by 58% in CG. Abundant AChE-H, fewer AChE-T, and even fewer AChE-R and BuChE mRNAs were observed in HG, and their content was greatly diminished in CG. The high level of the AChE-H mRNA explains the abundance of AChE-H subunits in HG, which as glycosylphosphatidylinositol (GPI)-anchored amphiphilic AChE dimers (G2A) and monomers (G1A) account for 69% of AChE activity. The identification of AChE-T and BuChE mRNAs justifies the occurrence in gut of A12, G4H and PRiMA-containing G4A AChE forms, besides G4H, G4A and G1H BuChE. The down-regulation of ChEs might contribute to gut carcinogenesis by increasing acetylcholine availability and overstimulating muscarinic receptors. Received 19 May 2006; received after revision 5 June 2006; accepted 5 July 2006  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号