首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
现状及发展   10篇
综合类   1篇
  2017年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2006年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
排序方式: 共有11条查询结果,搜索用时 406 毫秒
1.
Integrin-mediated cytoskeletal tension supports growth-factor-induced proliferation, and disruption of the actin cytoskeleton in growth factor-stimulated cells prevents the re-expression of cyclin D and cell cycle re-entry from quiescence. In contrast to cells that enter the cell cycle from G0, cycling cells continuously express cyclin D, and are subject to major cell shape changes during the cell cycle. Here, we investigated the cell cycle requirements for cytoskeletal tension and cell spreading in cycling mammalian cells that enter G1-phase from mitosis. Disruption of the actin cytoskeleton at progressive time-points in G1-phase induced cell rounding, FA disassembly, and attenuated both integrin signaling and growth factor-induced p44/p42 mitogen-activated protein kinase activation. Although cyclin D expression was reduced, the expression of cyclin A and entry into S-phase were not affected. Moreover, expression of cyclin B1, progression through G2- and M-phase, and commitment to a new cell cycle occurred normally. In contrast, cell cycle progression was strongly prevented by inhibition of MAPK activity in G1-phase, whereas cell spreading, cytoskeletal organization, and integrin signaling were not impaired. MAPK inhibition also prevented cytoskeleton-independent cell cycle progression. Thus, these results uncouple the requirements for cell spreading and cytoskeletal organization from MAPK signaling, and show that cycling mammalian cells can proliferate independently of actin stress fibers, focal adhesions, or cell spreading, as long as a threshold level of MAPK activity is sustained.  相似文献   
2.
Even though every cell in a multicellular organism contains the same genes, the differing spatiotemporal expression of these genes determines the eventual phenotype of a cell. This means that each cell type contains a specific epigenetic program that needs to be replicated through cell divisions, along with the genome, in order to maintain cell identity. The stable inheritance of these programs throughout the cell cycle relies on several epigenetic mechanisms. In this review, DNA methylation and histone methylation by specific histone lysine methyltransferases (KMT) and the Polycomb/Trithorax proteins are considered as the primary mediators of epigenetic inheritance. In addition, non-coding RNAs and nuclear organization are implicated in the stable transfer of epigenetic information. Although most epigenetic modifications are reversible in nature, they can be stably maintained by self-recruitment of modifying protein complexes or maintenance of these complexes or structures through the cell cycle.  相似文献   
3.
Actin-directed processes such as membrane ruffling and cell migration are regulated by specific signal transduction pathways that become activated by growth factor receptors. The same signaling pathways that lead to modifications in actin dynamics also activate cPLA2α. Moreover, arachidonic acid, the product of cPLA2α activity, is involved in regulation of actin dynamics. Therefore, it was investigated whether cPLA2α plays a role in actin dynamics, more specifically during growth factor-induced membrane ruffling and cell migration. Upon stimulation of ruffling and cell migration by growth factors, endogenous cPLA2α and its active phosphorylated form were shown to relocate at protrusions of the cell membrane involved in actin and membrane dynamics. Inhibition of cPLA2α activity with specific inhibitors blocked growth factor-induced membrane and actin dynamics, suggesting an important role for cPLA2α in these processes.  相似文献   
4.
Karels TJ  Boonstra R 《Nature》2000,408(6811):460-463
No population increases without limit. The processes that prevent this can operate in either a density-dependent way (acting with increasing severity to increase mortality rates or decrease reproductive rates as density increases), a density-independent way, or in both ways simultaneously. However, ecologists disagree for two main reasons about the relative roles and influences that density-dependent and density-independent processes have in determining population size. First, empirical studies showing both processes operating simultaneously are rare. Second, time-series analyses of long-term census data sometimes overestimate dependence. By using a density-perturbation experiment on arctic ground squirrels, we show concurrent density-dependent and density-independent declines in weaning rates, followed by density-dependent declines in overwinter survival during hibernation. These two processes result in strong, density-dependent convergence of experimentally increased populations to those of control populations that had been at low, stable levels.  相似文献   
5.
6.
7.
Cell cycle progression is regulated by both intracellular and extracellular control mechanisms. Intracellular controls ensure that cell cycle progression is stopped in response to irregularities such as DNA damage or faulty spindle assembly, whereas extracellular factors may determine cell fate such as differentiation, proliferation or programmed cell death (apoptosis). When extracellular factors bind to receptors at the outside of the cell, signal transduction cascades are activated inside the cell that eventually lead to cellular responses. We have shown previously that MAP kinase (MAPK), one of the proteins involved in several signal transduction processes, is phosphorylated early after mitosis and translocates to the nucleus around the restriction point. The activation of MAPK is independent of cell attachment, but does require the presence of growth factors. Moreover, it appears that in Chinese hamster ovary cells, a transformed cell line, growth factors must be present early in the G1 phase for a nuclear translocation of MAPK and subsequent DNA replication to occur. When growth factors are withdrawn from the medium immediately after mitosis, MAPK is not phosphorylated, cell cycle progression is stopped and cells appear to enter a quiescent state, which may lead to apoptosis. Furthermore, in addition to this growth-factor-regulated decision point in early G1 phase, another growth-factor-sensitive period can be distinguished at the end of the G1 phase. This period is suggested to correlate with the classical restriction point (R) and may be related to cell differentiation.  相似文献   
8.
Activation of mitogen-activated protein (MAP) kinase is essential for cyclin D1 expression and provides a link between mitogenic signalling and cell cycle progression. Hydrogen peroxide (H2 O2 ) activates MAP kinase; however, it is not known whether this leads to cyclin D expression. Sustained expression of cyclin D1 and D2 was observed when Her14 fibroblasts were incu-bated with 3 mM or higher H2 O2 concentrations. Similar results were obtained when cells were incubated in the presence of serum (FCS). However, the sustained expres-complex sion of cyclin D1 and D2 upon H2 O2 treatment was not due to the MAP kinase pathway, because MAP kinase kinase inhibitors did not inhibit cyclin D expression. Furthermore, cyclin D1 and D2 levels remained constant even after addition of a protein synthesis inhibitor, indicating that the effect of H2 O2 was not due to induction of protein synthesis. These results indicate that H2 O2 reversibly inhibits the ubiquitin-proteasome dependent degra-dation of cyclin D1 and D2, probably by transiently in-hibiting ubiquitination and/or the proteasome. Received 12 March 2001; received after revision 5 April 2001; accepted 9 April 2001  相似文献   
9.
Arachidonic acid has been implicated in regulating cellular proliferation, and is preferentially released by the 85-kDa cytosolic phospholipase A2 (cPLA2). Recently, we demonstrated that cPLA2 is activated at distinct periods during the ongoing cell cycle of neuroblastoma cells. The purpose of the present study was to establish the role of these cPLA2 activity peaks in cell cycle progression. Inhibition of cPLA2 activity with arachidonyl trifluoromethylketone (ATK) in early G1 phase reduced DNA synthesis markedly. A 24-h incubation with ATK revealed no significant difference in cell number compared to untreated cells, although cPLA2 activity was still inhibited. This suggests redundancy of different PLA2 enzymes. Lipoxygenase inhibition in early G1 resulted in G1 phase arrest, whereas inhibitors for cyclooxygenase had no effect. Furthermore, cells stopped progressing through S phase when lipoxygenase was inhibited in early S phase, demonstrating the requirement of lipoxygenase products for S phase progression.  相似文献   
10.
During the cell cycle, a cell may encounter one of five different fates: it can proliferate, differentiate, become quiescent or senescent, or go into apoptosis. The initiation of such fates is often seen in the G1 phase. The aim of this review is to describe an integrative model of G1 phase progression and cell fate determination. Along the G1 phase, the cell will encounter an early checkpoint after which apoptosis can result. For a quiescent state and for differentiation, the cell will exit G1 before the restriction point and a subsequent differentiation checkpoint will decide the fate of the cell, quiescence or differentiation. After the restriction point, the cell can be arrested in response to stress stimuli, such as telomere depletion, and a decision between senescence and apoptosis occurs. Received 19 June 2007; received after revision 23 July 2007; accepted 17 August 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号