首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
现状及发展   4篇
研究方法   1篇
综合类   5篇
  2018年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The Ca2+-binding protein parvalbumin (PV) and mitochondria play important roles in Ca2+ signaling, buffering and sequestration. Antagonistic regulation of PV and mitochondrial volume is observed in in vitro and in vivo model systems. Changes in mitochondrial morphology, mitochondrial volume and dynamics (fusion, fission, mitophagy) resulting from modulation of PV were investigated in MDCK epithelial cells with stable overexpression/downregulation of PV. Increased PV levels resulted in smaller, roundish cells and shorter mitochondria, the latter phenomenon related to reduced fusion rates and decreased expression of genes involved in mitochondrial fusion. PV-overexpressing cells displayed increased mitophagy, a likely cause for the decreased mitochondrial volumes and the smaller overall cell size. Cells showed lower mobility in vitro, paralleled by reduced protrusions. Constitutive PV down-regulation in PV-overexpressing cells reverted mitochondrial morphology and fractional volume to the state present in control MDCK cells, resulting from increased mitochondrial movement and augmented fusion rates. PV-modulated, bi-directional and reversible mitochondrial dynamics are key to regulation of mitochondrial volume.  相似文献   
2.
Mori M  Abegg MH  Gähwiler BH  Gerber U 《Nature》2004,431(7007):453-456
The hippocampus, a brain structure essential for memory and cognition, is classically represented as a trisynaptic excitatory circuit. Recent findings challenge this view, particularly with regard to the mossy fibre input to CA3, the second synapse in the trisynaptic pathway. Thus, the powerful mossy fibre input to CA3 pyramidal cells might mediate both synaptic excitation and inhibition. Here we show, by recording from connected cell pairs in rat entorhinal-hippocampal slice cultures, that single action potentials in a dentate granule cell evoke a net inhibitory signal in a pyramidal cell. The hyperpolarization is due to disynaptic feedforward inhibition, which overwhelms monosynaptic excitation. Interestingly, this net inhibitory synaptic response changes to an excitatory signal when the frequency of presynaptic action potentials increases. The process responsible for this switch involves the facilitation of monosynaptic excitatory transmission coupled with rapid depression of inhibitory circuits. This ability to immediately switch the polarity of synaptic responses constitutes a novel synaptic mechanism, which might be crucial to the state-dependent processing of information in associative hippocampal networks.  相似文献   
3.
Ritter C  Maddelein ML  Siemer AB  Lührs T  Ernst M  Meier BH  Saupe SJ  Riek R 《Nature》2005,435(7043):844-848
Prions are believed to be infectious, self-propagating polymers of otherwise soluble, host-encoded proteins. This concept is now strongly supported by the recent findings that amyloid fibrils of recombinant prion proteins from yeast, Podospora anserina and mammals can induce prion phenotypes in the corresponding hosts. However, the structural basis of prion infectivity remains largely elusive because acquisition of atomic resolution structural properties of amyloid fibrils represents a largely unsolved technical challenge. HET-s, the prion protein of P. anserina, contains a carboxy-terminal prion domain comprising residues 218-289. Amyloid fibrils of HET-s(218-289) are necessary and sufficient for the induction and propagation of prion infectivity. Here, we have used fluorescence studies, quenched hydrogen exchange NMR and solid-state NMR to determine the sequence-specific positions of amyloid fibril secondary structure elements of HET-s(218-289). This approach revealed four beta-strands constituted by two pseudo-repeat sequences, each forming a beta-strand-turn-beta-strand motif. By using a structure-based mutagenesis approach, we show that this conformation is the functional and infectious entity of the HET-s prion. These results correlate distinct structural elements with prion infectivity.  相似文献   
4.
The mammalian kidney develops from the ureteric bud and the metanephric mesenchyme. In mice, the ureteric bud invades the metanephric mesenchyme at day E10.5 and begins to branch. The tips of the ureteric bud induce the metanephric mesenchyme to condense and form the cap mesenchyme. Some cells of this cap mesenchyme undergo a mesenchymal-to-epithelial transition and differentiate into renal vesicles, which further develop into nephrons. The developing kidney expresses Fibroblast growth factor (Fgf)1, 7, 8, 9, 10, 12 and 20 and Fgf receptors Fgfr1 and Fgfr2. Fgf7 and Fgf10, mainly secreted by the metanephric mesenchyme, bind to Fgfr2b of the ureteric bud and induce branching. Fgfr1 and Fgfr2c are required for formation of the metanephric mesenchyme, however the two receptors can substitute for one another. Fgf8, secreted by renal vesicles, binds to Fgfr1 and supports survival of cells in the nascent nephrons. Fgf9 and Fgf20, expressed in the metanephric mesenchyme, are necessary to maintain survival of progenitor cells in the cortical region of the kidney. FgfrL1 is a novel member of the Fgfr family that lacks the intracellular tyrosine kinase domain. It is expressed in the ureteric bud and all nephrogenic structures. Targeted deletion of FgfrL1 leads to severe kidney dysgenesis due to the lack of renal vesicles. FgfrL1 is known to interact mainly with Fgf8. It is therefore conceivable that FgfrL1 restricts signaling of Fgf8 to the precise location of the nascent nephrons. It might also promote tight adhesion of cells in the condensed metanephric mesenchyme as required for the mesenchymal-to-epithelial transition.  相似文献   
5.
6.
High blood low-density-lipoprotein (LDL) cholesterol is a serious health problem among an increased number of patients in the Western world. Statins and other cholesterol lowering drugs have proven to be beneficial as therapy but are not optimal and show adverse effects in some patients. The LDL receptor is a crucial determinant of cholesterol metabolism in the body and amenable for drug interventions. Novel insights into the physiology of this receptor come from studies on the ubiquitination and degradation of LDL receptor by the ubiquitin ligase Mylip/Idol that is induced in cells by the nuclear receptor, LXR. This may open up new possibilities in the future to influence LDL receptor levels and cholesterol metabolism pharmacologically in various diseases.  相似文献   
7.
Gliki G  Ebnet K  Aurrand-Lions M  Imhof BA  Adams RH 《Nature》2004,431(7006):320-324
During spermatogenesis in the mammalian testis, stem cells (spermatogonia) differentiate into spermatocytes, which subsequently undergo two consecutive meiotic divisions to give rise to haploid spermatids. These cells are initially round but progressively elongate, condense their nuclei, acquire flagellar and acrosomal structures, and shed a significant amount of their cytoplasm to form spermatozoa (the sperm cells) in a developmental cascade termed spermiogenesis. Defects in these processes will lead to a lack of mature sperm cells (azoospermia), which is a major cause of male infertility in the human population. Here we report that a cell-surface protein of the immunoglobulin superfamily, junctional adhesion molecule-C (JAM-C), is critically required for the differentiation of round spermatids into spermatozoa in mice. We found that Jam-C is essential for the polarization of round spermatids, a function that we attribute to its role in the assembly of a cell polarity complex.  相似文献   
8.
FGFRL1 (fibroblast growth factor receptor like 1) is the most recently discovered member of the FGFR family. It contains three extracellular Ig-like domains similar to the classical FGFRs, but it lacks the protein tyrosine kinase domain and instead contains a short intracellular tail with a peculiar histidine-rich motif. The gene for FGFRL1 is found in all metazoans from sea anemone to mammals. FGFRL1 binds to FGF ligands and heparin with high affinity. It exerts a negative effect on cell proliferation, but a positive effect on cell differentiation. Mice with a targeted deletion of the Fgfrl1 gene die perinatally due to alterations in their diaphragm. These mice also show bilateral kidney agenesis, suggesting an essential role for Fgfrl1 in kidney development. A human patient with a frameshift mutation exhibits craniosynostosis, arguing for an additional role of FGFRL1 during bone formation. FGFRL1 contributes to the complexity of the FGF signaling system.  相似文献   
9.
Gerodermia osteodysplastica is an autosomal recessive disorder characterized by wrinkly skin and osteoporosis. Here we demonstrate that gerodermia osteodysplastica is caused by loss-of-function mutations in SCYL1BP1, which is highly expressed in skin and osteoblasts. The protein localizes to the Golgi apparatus and interacts with Rab6, identifying SCYL1BP1 as a golgin. These results associate abnormalities of the secretory pathway with age-related changes in connective tissues.  相似文献   
10.
The endogenous cannabinoid system controls extinction of aversive memories   总被引:47,自引:0,他引:47  
Acquisition and storage of aversive memories is one of the basic principles of central nervous systems throughout the animal kingdom. In the absence of reinforcement, the resulting behavioural response will gradually diminish to be finally extinct. Despite the importance of extinction, its cellular mechanisms are largely unknown. The cannabinoid receptor 1 (CB1) and endocannabinoids are present in memory-related brain areas and modulate memory. Here we show that the endogenous cannabinoid system has a central function in extinction of aversive memories. CB1-deficient mice showed strongly impaired short-term and long-term extinction in auditory fear-conditioning tests, with unaffected memory acquisition and consolidation. Treatment of wild-type mice with the CB1 antagonist SR141716A mimicked the phenotype of CB1-deficient mice, revealing that CB1 is required at the moment of memory extinction. Consistently, tone presentation during extinction trials resulted in elevated levels of endocannabinoids in the basolateral amygdala complex, a region known to control extinction of aversive memories. In the basolateral amygdala, endocannabinoids and CB1 were crucially involved in long-term depression of GABA (gamma-aminobutyric acid)-mediated inhibitory currents. We propose that endocannabinoids facilitate extinction of aversive memories through their selective inhibitory effects on local inhibitory networks in the amygdala.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号