首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  国内免费   1篇
系统科学   7篇
教育与普及   1篇
理论与方法论   2篇
现状及发展   8篇
研究方法   1篇
综合类   14篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  1995年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Fungiform taste papillae form a regular array on the dorsal tongue. Taste buds arise from papilla epithelium and, unusually for epithelial derivatives, synapse with neurons, release neurotransmitters and generate receptor and action potentials. Despite the importance of taste as one of our five senses, genetic analyses of taste papilla and bud development are lacking. We demonstrate that Wnt-beta-catenin signaling is activated in developing fungiform placodes and taste bud cells. A dominant stabilizing mutation of epithelial beta-catenin causes massive overproduction of enlarged fungiform papillae and taste buds. Likewise, genetic deletion of epithelial beta-catenin or inhibition of Wnt-beta-catenin signaling by ectopic dickkopf1 (Dkk1) blocks initiation of fungiform papilla morphogenesis. Ectopic papillae are innervated in the stabilizing beta-catenin mutant, whereas ectopic Dkk1 causes absence of lingual epithelial innervation. Thus, Wnt-beta-catenin signaling is critical for fungiform papilla and taste bud development. Altered regulation of this pathway may underlie evolutionary changes in taste papilla patterning.  相似文献   
2.
It has been proposed that dual inhibitors of protein kinases CK2 and PIM-1 are tools particularly valuable to induce apoptosis of cancer cells, a property, however, implying cell permeability, which is lacking in the case of selective CK2/PIM-1 inhibitors developed so far. To fill this gap, we have derivatized the scaffold of the promiscuous CK2 inhibitor TBI with a deoxyribose moiety, generating TDB, a selective, cell-permeable inhibitor of CK2 and PIM-1. Here, we shed light on the structural features underlying the potency and narrow selectivity of TDB by exploiting a number of TDB analogs and by solving the 3D structure of the TDB/CK2 complex at 1.25?Å resolution, one of the highest reported so far for this kinase. We also show that the cytotoxic efficacy of TDB is almost entirely due to apoptosis, is accompanied by parallel inhibition of cellular CK2 and PIM-1, and is superior to both those observed combining individual inhibitors of CK2 and PIM-1 and by treating cells with the CK2 inhibitor CX4945. These data, in conjunction with the observations that cancer cells are more susceptible than non-cancer cells to TDB and that such a sensitivity is maintained in a multi-drug resistance background, highlight the pharmacological potential of this compound.  相似文献   
3.
Various types of tumors, particularly those originating from the ovary and gastrointestinal tract, display a strong predilection for the peritoneal cavity as the site of metastasis. The intraperitoneal spread of a malignancy is orchestrated by a reciprocal interplay between invading cancer cells and resident normal peritoneal cells. In this review, we address the current state-of-art regarding colonization of the peritoneal cavity by ovarian, colorectal, pancreatic, and gastric tumors. Particular attention is paid to the pro-tumoral role of various kinds of peritoneal cells, including mesothelial cells, fibroblasts, adipocytes, macrophages, the vascular endothelium, and hospicells. Anatomo-histological considerations on the pro-metastatic environment of the peritoneal cavity are presented in the broader context of organ-specific development of distal metastases in accordance with Paget’s “seed and soil” theory of tumorigenesis. The activity of normal peritoneal cells during pivotal elements of cancer progression, i.e., adhesion, migration, invasion, proliferation, EMT, and angiogenesis, is discussed from the perspective of well-defined general knowledge on a hospitable tumor microenvironment created by the cellular elements of reactive stroma, such as cancer-associated fibroblasts and macrophages. Finally, the paper addresses the unique features of the peritoneal cavity that predispose this body compartment to be a niche for cancer metastases, presents issues that are topics of an ongoing debate, and points to areas that still require further in-depth investigations.  相似文献   
4.
MultipleCriteriaGames-TheoryandApplications¥AndrzejP.Wierzbicki(InstituteofControlandComputationEngineering,WarsawUniversityo...  相似文献   
5.
The skin being a protective barrier between external and internal (body) environments has the sensory and adaptive capacity to maintain local and global body homeostasis in response to noxious factors. An important part of the skin response to stress is its ability for melatonin synthesis and subsequent metabolism through the indolic and kynuric pathways. Indeed, melatonin and its metabolites have emerged as indispensable for physiological skin functions and for effective protection of a cutaneous homeostasis from hostile environmental factors. Moreover, they attenuate the pathological processes including carcinogenesis and other hyperproliferative/inflammatory conditions. Interestingly, mitochondria appear to be a central hub of melatonin metabolism in the skin cells. Furthermore, substantial evidence has accumulated on the protective role of the melatonin against ultraviolet radiation and the attendant mitochondrial dysfunction. Melatonin and its metabolites appear to have a modulatory impact on mitochondrion redox and bioenergetic homeostasis, as well as the anti-apoptotic effects. Of note, some metabolites exhibit even greater impact than melatonin alone. Herein, we emphasize that melatonin–mitochondria axis would control integumental functions designed to protect local and perhaps global homeostasis. Given the phylogenetic origin and primordial actions of melatonin, we propose that the melatonin-related mitochondrial functions represent an evolutionary conserved mechanism involved in cellular adaptive response to skin injury and repair.  相似文献   
6.
Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signalling was indicated by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.  相似文献   
7.
1 Results Classical solutions of electrolytes are obtained by dissolution of salts in molecular solvents. Such systems consist of solvated ions, their charged or neutral combinations and solvent molecules. On the other hand, a salt may be melted down, or in other words ‘liquified’, by providing to the system a heat to counterbalance the salt lattice energy. Such a system, called molten salts or ionic liquid (IL), consists of ions and their combinations and is free of any molecular solvent. Relatively hi...  相似文献   
8.
本书是关于焊接材料的变形及热的耦合方面的一本专著。在焊接过程中,材料的热物性参数和塑性变形区域是随温度的变化而改变,由于温度梯度引起材料的热膨胀的差异导致热应力。本书的作者把焊接材料当作一个热动力系统,用热力耦合或非耦合理论研究焊接过程中的热效应,其中大部分的焊接问题用非耦合理论来研究。书中还分别论述了焊接过程中的热传导和焊接应力。  相似文献   
9.
He X  Zhou J  Bartlam M  Zhang R  Ma J  Lou Z  Li X  Li J  Joachimiak A  Zeng Z  Ge R  Rao Z  Liu Y 《Nature》2008,454(7208):1123-1126
  相似文献   
10.
近年来禽流感病毒疫情的发生给全球带来了重大威胁。对流感病毒蛋白,特别是流感病毒RNA聚合酶复合体的结构生物学研究对揭示病毒复制机制以及开展相关药物设计都具有重大意义。流感病毒RNA聚合酶是由PB1、PB2以及PA亚基组成的负责流感病毒的RNA合成以及维持病毒生命周期至关重要的分子机器。其中,PB1是该聚合酶的RNA合成亚基,PB2负责获取宿主mRNA用于病毒mRNA合成,而PA亚基功能则不清楚。本研究报道了来源于禽流感病毒RNA聚合酶PA亚基羧基端与PB1氨基端短肽复合体的三维晶体结构。该结构揭示了PA与PB1亚基相互作用方式,并分析了PA分子在RNA结合等方面的功能,对进一步研究PA功能以及开展针对聚合酶PA分子的药物设计具有十分重大的意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号