首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
现状及发展   1篇
研究方法   2篇
综合类   3篇
自然研究   1篇
  2021年   1篇
  2018年   1篇
  2011年   3篇
  2010年   1篇
  2002年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Cellular and Molecular Life Sciences - Hematopoietic system transports all necessary nutrients to the whole organism and provides the immunological protection. Blood cells have high turnover,...  相似文献   
2.
Using variants from the 1000 Genomes Project pilot European CEU dataset and data from additional resequencing studies, we densely genotyped 183 non-HLA risk loci previously associated with immune-mediated diseases in 12,041 individuals with celiac disease (cases) and 12,228 controls. We identified 13 new celiac disease risk loci reaching genome-wide significance, bringing the number of known loci (including the HLA locus) to 40. We found multiple independent association signals at over one-third of these loci, a finding that is attributable to a combination of common, low-frequency and rare genetic variants. Compared to previously available data such as those from HapMap3, our dense genotyping in a large sample collection provided a higher resolution of the pattern of linkage disequilibrium and suggested localization of many signals to finer scale regions. In particular, 29 of the 54 fine-mapped signals seemed to be localized to single genes and, in some instances, to gene regulatory elements. Altogether, we define the complex genetic architecture of the risk regions of and refine the risk signals for celiac disease, providing the next step toward uncovering the causal mechanisms of the disease.  相似文献   
3.
The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A?site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A?site. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner. Despite the availability of structures of various EF-G-ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within Thermus thermophilus EF-G-ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P?site) on the 30S head and simultaneously establishes interaction with the exit site (E?site) on the 30S platform, a novel intra-subunit 'pe/E' hybrid state is formed. This state is stabilized by domain?IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the 'missing link' in terms of tRNA intermediates involved in the universally conserved translocation process.  相似文献   
4.
5.
The study of planarian regeneration may help us to understand how we can rebuild organs and tissues after injury, disease or ageing. The robust regenerative abilities of planarians are based upon a population of totipotent stem cells (neoblasts), and among the organs regenerated by these animals is a well-organized central nervous system. In recent years, methodologies such as whole-mount in situ hybridizations and double-stranded RNA have been extended to planarians with the aim of unravelling the molecular basis of their regenerative capacities. Here we report the identification and characterization of nou-darake (ndk), a gene encoding a fibroblast growth factor receptor (FGFR)-like molecule specifically expressed in the head region of the planarian Dugesia japonica. Loss of function of ndk by RNA interference results in the induction of ectopic brain tissues throughout the body. This ectopic brain formation was suppressed by inhibition of two planarian FGFR homologues (FGFR1 and FGFR2). Additionally, ndk inhibits FGF signalling in Xenopus embryos. The data suggest that ndk may modulate FGF signalling in stem cells to restrict brain tissues to the head region of planarians.  相似文献   
6.
Under laboratory conditions we scrutinized the reproduction and development of two clausiliid land snail species from northern Vietnam: Phaedusa paviei (Morlet, 1892) and Oospira vanbuensis (Bavay and Dautzenberg, 1899). These species, very similar in shell size and shape, feature different reproductive modes. The former is viviparous, giving birth to one or two neonates on a single occasion, with the number of developing embryos retained in the reproductive tract ranging from 1 to 11. The embryonic shells are 1.8–4.7 mm in height. The latter species is oviparous and produces eggs in clutches (four to six per clutch). Hatching occurs 18–21 days after egg-laying. Both species exhibit a similar growth pattern: the ultimate shell size is attained after 6.5–8.5 months and reproduction starts 5–7 months later. The distribution of viviparous reproduction among the Phaedusinae and its taxonomic importance are discussed.  相似文献   
7.
Fanconi anemia is a rare recessive disorder characterized by genome instability, congenital malformations, progressive bone marrow failure and predisposition to hematologic malignancies and solid tumors. At the cellular level, hypersensitivity to DNA interstrand crosslinks is the defining feature in Fanconi anemia. Mutations in thirteen distinct Fanconi anemia genes have been shown to interfere with the DNA-replication-dependent repair of lesions involving crosslinked DNA at stalled replication forks. Depletion of SLX4, which interacts with multiple nucleases and has been recently identified as a Holliday junction resolvase, results in increased sensitivity of the cells to DNA crosslinking agents. Here we report the identification of biallelic SLX4 mutations in two individuals with typical clinical features of Fanconi anemia and show that the cellular defects in these individuals' cells are complemented by wildtype SLX4, demonstrating that biallelic mutations in SLX4 (renamed here as FANCP) cause a new subtype of Fanconi anemia, Fanconi anemia-P.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号