首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   2篇
教育与普及   7篇
现状及发展   1篇
综合类   2篇
  2022年   1篇
  2021年   1篇
  2014年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
排序方式: 共有10条查询结果,搜索用时 757 毫秒
1
1.
壁虎在竖直面内不同方向运动时运动行为的观察和运动作用力的测定不仅能揭示出壁虎运动的力学规律, 也可以进一步获得仿生机器人控制设计的灵感. 用三维力传感器阵列测定大壁虎在竖直面内运动的三维作用力, 并结合高速摄像讨论在自下向上, 自上向下和自右向左3 个不同方向运动时大壁虎的运动行为及其脚掌的功能. 结果表明大壁虎的运动速度随步频的提高而增加, 但与脚掌的黏附时间与脱附时间无明显相关性. 大壁虎各脚掌产生相应的作用力以平衡重力和翻转矩, 并为运动提供必要的推力; 位于身体质心上方的脚掌在支撑身体、运动驱动、运动平稳等方面都起到关键作用; 竖直面内大壁虎在不同方向运动时运动行为和脚掌功能所发生的相应改变, 使得大壁虎能够在竖直面上安全高效的自由运动. 这一研究对仿壁虎机器人的结构设计、步态规划和控制的选择有所启发和帮助.  相似文献   
2.
现代装备日益庞大、复杂,各分系统和模块间形成大量结构形状复杂的狭小空间,检测此类狭小空间内的设备状态对保障系统安全、降低运营成本具有重要意义.受壁虎能够在狭小空间顺利攀爬运动的启发,我们发明了仿壁虎匍匐运动机构和黏附脚掌,这种机器人在狭小空间,特别是宽度受限空间的运动稳定性为机器人运动规划的核心问题.本文研究宽度受限情况下匍匐式四足机器人的运动稳定性,作为对比,同时研究非受限情况下匍匐四足机器人的稳定运动设计.本文提出了一种保障运动稳定的重心轨迹规划方法,结合纵向稳定裕度和静态稳定区域方法,使用双支撑三角形减少支撑区域的约束条件,保留前向边界和后向边界的稳定裕度计算以简化步骤,提高了稳定裕度计算和重心轨迹规划的效率;提出在宽度受限情况下匍匐式四足机器人的运动策略,四肢向内收拢适应宽度受限约束,分析受限宽度下机器人的稳定裕度和最大步长.实验验证了该机器人在受限空间前向和横向运动的稳定性及运动控制方法.  相似文献   
3.
近年来, 爬壁机器人是机器人领域研究和开发的一个热点课题. 大壁虎是研究爬墙机器人的理想模型. 在仿壁虎机器人的研制过程中, 脚掌(趾)的设计是关键技术之一. 采用高速摄像和电生理学方法, 观测了大壁虎前、后脚在不同界面爬行时不同的运动模式; 研究了5个脚趾的黏-脱附运动及其感觉信息传入的神经支配; 发现了5个脚趾运动和感觉功能的不同分区, 黏附和脱附行为及其感受传入的分级调控现象. 这些结果为当前仿壁虎机器人, 以及其他4足和多足机器人脚掌(趾)的结构和运动控制系统的设计提供重要的信息和理念.  相似文献   
4.
动物运动反力的测定将揭示动物运动过程的力学规律、启发仿生机器入控制设计.用三维力传感器测定虎纹捕鸟蛛水平运动时的三维运动反力,高速摄像分析虎纹捕鸟蛛各步足的功能.结果表明蜘蛛前足支撑相和摆动相不连续,运动方向受到的力始终和运动方向相反,起探测和辅助支撑作用.后足受到的力最大,方向始终和运动方向相同,起主要驱动作用.中间两对足受到的力在支撑相前段与运动方向相反,在支撑相后段与运动方向相同,但侧向力最大,对稳定运动贡献较大.运动中,法向反力显著大于侧向和运动方向的反力,各步足的支撑角变化不大,均在60°-70°间.上述结果表明了蜘蛛运动中各步足力学功能的差异,为启发机器人结构设计、步态规划和控制规律提供了仿生依据.  相似文献   
5.
动物运动行为的研究对运动学的分析以及仿生机器人的研制有着重要意义. 运用动物运动行为观测系统获取了虎纹捕鸟蛛(Ornithoctonus huwena)水平面直线运动的运动学信息,如步足的运动状态、质心的运动和步足各关节转动角度的变化等信息. 结果表明: 虎纹捕鸟蛛以一侧的步足1 和3 与对侧的步足2 和4 为一组运动相, 两组运动相在运动中相互交替运动相位. 运动速度的提高主要依靠于步频的提高来实现, 并且运动稳定性优于昆虫. 质心的速度和高度周期波动, 步足相位交替时质心的高度和速度均较高, 稳定运动状态下质心的高度和速度均较低. 步足4 偏向角的变化最小, 有利于对身体的驱动; 由于步足1 的探寻功能使得运动中其各关节转动角度的变化不定. 上述结果对仿生机器人的设计和步态规划有所启示.  相似文献   
6.
用3维运动作用力测试系统测量大壁虎在墙面和天花板上稳定运动时的脚趾作用力,分析了脚趾力的变化与壁虎运动的关系;用高速摄像跟踪观察壁虎在稳定运动时脚趾行为,获得壁虎在墙面、天花板上运动时脚掌形态特征;揭示大壁虎在墙面及天花板上稳定粘附的形态学和接触力学规律.结果表明:在墙面和天花板接触表面内脚趾的面力与脚趾的夹角分别为12.6°和3.1°,垂直于接触表面的粘附力足以平衡重力引起的翻转矩或重力;壁虎第1和第5脚趾产生方向相反的力,在接触面内形成冗余结构,提高接触的可靠性和稳定性;墙面与天花板表面运动中脚趾作用力与运动表面的夹角近似相等(约20°);壁虎在天花板运动时,脚趾作用力明显大于在墙面运动时的脚趾作用力;上述结果可以启发仿壁虎机器人脚掌的控制与设计。  相似文献   
7.
在外界的干扰下,动物可以实时地调整运动模式,来平衡外界的扰动以保持运动的平稳性.本文以短腿直立动物大鼠(Rattus norregicus)为研究对象,用单摆分别冲击大鼠的胸外侧和腹外侧,由高速摄像机和三维运动反力测试系统同步记录大鼠受到冲击时的运动行为和受到的地面反力.研究大鼠受到侧向冲击的平衡调节策略.大鼠抗冲击的平衡调节策略与身体受冲击的部位有显著相关性.胸外侧受到冲击时,大鼠主要依靠类弹簧的身体迅速弯曲吸收能量.腹外侧受到冲击时,大鼠通过身体的侧摆和腿的外支撑,刚性地平衡侧向冲击力和力矩.通过身体的侧摆实现应急缓冲比身体弯曲的应急缓冲时间短,但是调整恢复到正常运动状态需要更多时间.研究动物在外界干扰下的身体平衡调节策略,可以为仿生机器人的鲁棒性设计提供参考.  相似文献   
8.
虎纹捕鸟蛛运动反力测试   总被引:1,自引:0,他引:1  
动物运动反力的测定将揭示动物运动过程的力学规律、启发仿生机器人控制设计.用三维力传感器测定虎纹捕鸟蛛水平运动时的三维运动反力,高速摄像分析虎纹捕鸟蛛各步足的功能.结果表明蜘蛛前足支撑相和摆动相不连续,运动方向受到的力始终和运动方向相反,起探测和辅助支撑作用.后足受到的力最大,方向始终和运动方向相同,起主要驱动作用. 中间两对足受到的力在支撑相前段与运动方向相反,在支撑相后段与运动方向相同,但侧向力最大,对稳定运动贡献较大.运动中,法向反力显著大于侧向和运动方向的反力,各步足的支撑角变化不大,均在60°-70°间.上述结果表明了蜘蛛运动中各步足力学功能的差异,为启发机器人结构设计、步态规划和控制规律提供了仿生依据.  相似文献   
9.
大壁虎在天花板表面的运动行为与动力学研究   总被引:1,自引:0,他引:1  
壁虎天花板表面运动作用力的测定对揭示壁虎运动的力学规律、获得仿生机器人控制设计的灵感均具有重要意义.用三维力传感器阵列测定大壁虎天花板表面运动的三维作用力, 结合高速摄像讨论壁虎在天花板表面运动中壁虎脚掌的作用力和预压力, 并比较分析了前后腿的作用. 结果表明壁虎在天花板表面运动的速度为0.17~0.48 m/s, 前后腿向身体中线方向收拢. 脚掌在与天花板表面初始接触时间内产生冗余的预压力, 以确保运动的安全, 前腿的法向预压力大于后腿. 前后腿的侧向作用力大小相当. 前腿运动方向的作用力始终和运动方向相同, 起主要推动作用; 后腿运动方向的作用力始终和运动方向相反. 前后腿的法向作用力分别占体重的73.4%和60.6%. 运动中, 运动方向的作用力明显大于侧向和法向的作用力, 前腿主要起到推动作用, 后腿则主要起稳定作用. 上述结果表明壁虎在天花板表面运动中腿功能的变化, 使得壁虎能够在极端条件下自由运动, 并启发机器人结构设计、步态规划和控制规律的选择.  相似文献   
10.
方轲  梅皓  宋逸  王周义  戴振东 《科学通报》2022,(21):2535-2552
动物机器人利用动物固有的感知、运动、能量供应和神经系统,通过神经信息干预,实现对生物运动行为的控制.这类特殊的机器人在运动稳定性、灵活性、环境适应性和自身运动能量供应等方面保持了天然的优势,具有重要的应用价值;同时,该研究涉及动物运动神经网络及外部调控信息与固有运动神经信息的交互作用机制等重大理论问题,是神经科学和机器人交互领域的重要研究方向.该研究高度融合了动物智能和机器智能,涉及动物行为学、神经科学、微机电技术、力学和通信技术等,是多学科交叉融合的前沿领域.本文回顾动物运动神经系统与运动行为调控之间的关系,系统梳理不同动物机器人的运动调控方法及系统构成,总结活动在水、陆、空不同空间中典型动物运动行为调控的研究进展,归纳分析动物机器人研究在运动调控方法、微电极植入、微刺激系统、通信导航和能量供应等研究中面临的关键问题,并预测未来的发展趋势.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号