首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
现状及发展   2篇
研究方法   5篇
综合类   26篇
自然研究   1篇
  2016年   2篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1999年   2篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
2.
1 Results Considerable interest has been devoted in recent years to block copolymers containing fluoroalkyl groups owing to exhibiting the low surface energy and the self-assembled polymeric aggregates resembling micelle in aqueous and organic media, which cannot be achieved in the corresponding randomly fluorinated copolymers[1].In these fluorinated block copolymers, we have found that ABA triblock-type fluoroalkylated oligomers and dendritic-type fluoroalkyl end-capped block copolymers can be prepared...  相似文献   
3.
Kawasaki disease is a pediatric systemic vasculitis of unknown etiology for which a genetic influence is suspected. We identified a functional SNP (itpkc_3) in the inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) gene on chromosome 19q13.2 that is significantly associated with Kawasaki disease susceptibility and also with an increased risk of coronary artery lesions in both Japanese and US children. Transfection experiments showed that the C allele of itpkc_3 reduces splicing efficiency of the ITPKC mRNA. ITPKC acts as a negative regulator of T-cell activation through the Ca2+/NFAT signaling pathway, and the C allele may contribute to immune hyper-reactivity in Kawasaki disease. This finding provides new insights into the mechanisms of immune activation in Kawasaki disease and emphasizes the importance of activated T cells in the pathogenesis of this vasculitis.  相似文献   
4.
Okada Y  Higuchi H  Hirokawa N 《Nature》2003,424(6948):574-577
Conventional isoforms of the motor protein kinesin behave functionally not as 'single molecules' but as 'two molecules' paired. This dimeric structure poses a barrier to solving its mechanism. To overcome this problem, we used an unconventional kinesin KIF1A (refs 5, 6) as a model molecule. KIF1A moves processively as an independent monomer, and can also work synergistically as a functional dimer. Here we show, by measuring its movement with an optical trapping system, that a single ATP hydrolysis triggers a single stepping movement of a single KIF1A monomer. The step size is distributed stochastically around multiples of 8 nm with a gaussian-like envelope and a standard deviation of 15 nm. On average, the step is directional to the microtubule's plus-end against a load force of up to 0.15 pN. As the source for this directional movement, we show that KIF1A moves to the microtubule's plus-end by approximately 3 nm on average on binding to the microtubule, presumably by preferential binding to tubulin on the plus-end side. We propose a simple physical formulation to explain the movement of KIF1A.  相似文献   
5.
The electronic transport properties of conventional three-dimensional metals are successfully described by Fermi-liquid theory. But when the dimensionality of such a system is reduced to one, the Fermi-liquid state becomes unstable to Coulomb interactions, and the conduction electrons should instead behave according to Tomonaga-Luttinger-liquid (TLL) theory. Such a state reveals itself through interaction-dependent anomalous exponents in the correlation functions, density of states and momentum distribution of the electrons. Metallic single-walled carbon nanotubes (SWNTs) are considered to be ideal one-dimensional systems for realizing TLL states. Indeed, the results of transport measurements on metal-SWNT and SWNT-SWNT junctions have been attributed to the effects of tunnelling into or between TLLs, although there remains some ambiguity in these interpretations. Direct observations of the electronic states in SWNTs are therefore needed to resolve these uncertainties. Here we report angle-integrated photoemission measurements of SWNTs. Our results reveal an oscillation in the pi-electron density of states owing to one-dimensional van Hove singularities, confirming the one-dimensional nature of the valence band. The spectral function and intensities at the Fermi level both exhibit power-law behaviour (with almost identical exponents) in good agreement with theoretical predictions for the TLL state in SWNTs.  相似文献   
6.
7.
A large-scale finite element modeling, simulation and visualization for wind flows are presented. The modeling method using GIS/CAD data is employed. The stabilized parallel finite element method based on SUPG/PSPG method is employed for the analysis of wind flows. The present method is applied to the simulation of wind flow and contaminant spread in urban area. The visualization based on virtual reality is employed to evaluate the mesh quality and computational results. The computed results are qualitatively in agreement with the experimental results and actual phenomena. The present method is shown to be a useful tool to simulate the wind flows in urban area.  相似文献   
8.
利用激光莫尔信号精密定位的复合控制研究   总被引:1,自引:0,他引:1  
在分析利用激光干涉莫尔信号的精密定位方法的基础上,提出了精密定位的粗控、微控两段复合式控制方法,实现了装置宽范围控制的精密定位高业度及精密定位时间的缩短,对加快集成电路制造技术的进步有重要的参考价值。  相似文献   
9.
In muscles, the arrays of skeletal myosin molecules interact with actin filaments and continuously generate force at various contraction speeds. Therefore, it is crucial for myosin molecules to generate force collectively and minimize the interference between individual myosin molecules. Knowledge of the elasticity of myosin molecules is crucial for understanding the molecular mechanisms of muscle contractions because elasticity directly affects the working and drag (resistance) force generation when myosin molecules are positively or negatively strained. The working stroke distance is also an important mechanical property necessary for elucidation of the thermodynamic efficiency of muscle contractions at the molecular level. In this review, we focus on these mechanical properties obtained from single-fiber and single-molecule studies and discuss recent findings associated with these mechanical properties. We also discuss the potential molecular mechanisms associated with reduction of the drag effect caused by negatively strained myosin molecules.  相似文献   
10.
Nomura K  Ohta H  Takagi A  Kamiya T  Hirano M  Hosono H 《Nature》2004,432(7016):488-492
Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H) and organic semiconductors have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material--namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)--for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V(-1) s(-1), which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6-9 cm2 V(-1) s(-1), and device characteristics are stable during repetitive bending of the TTFT sheet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号