首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
教育与普及   1篇
综合类   1篇
  2023年   1篇
  2022年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
羽扇豆醇是一种重要的五环三萜化合物,具有抗肿瘤、抗感染、抑菌等多种药理活性。从非洲药用植物绿玉树(Euphorbia tirucalli L.)中分离出羽扇豆醇合酶基因EtOSC7,测序结果表明该基因全长2 301 bp,编码766个氨基酸,与蓖麻(Ricinus communis)和木览(Bruguiera gymnorhiza)的羽扇豆醇合酶氨基酸序列的相似度分别为78%和76%。利用羊毛甾醇缺陷型酵母GIL77菌株对EtOSC7蛋白进行了功能验证,结果表明该蛋白能够催化羽扇豆醇的合成。以EtOSC7基因为基础,在大肠杆菌和酿酒酵母两种模式菌株中进行了羽扇豆醇生物合成的尝试,结果表明,在重组大肠杆菌中未检测到羽扇豆醇的生成,而在重组酿酒酵母中测得羽扇豆醇的产量为0.55 mg/L。研究结果可以为构建三萜化合物微生物细胞工厂提供新的基因元件,并为羽扇豆醇的生物合成提供理论支持。  相似文献   
2.
化学品和燃料的可持续生产以及缓解温室效应是目前人类面临的两大挑战.传统生物炼制技术可进行石化产品的替代生产,且绿色低碳;然而有些人类活动不可避免地产生碳排放,为了实现碳中和目标,迫切需要发展负排放技术以抵消这些排放.近年来,可直接将二氧化碳转化为燃料和化学品的第三代生物炼制技术为我们塑造低碳经济、实现碳中和提供了一个良好的解决方案.本文首先介绍固定二氧化碳的不同天然途径,随后概述可用于基于合成生物学理念设计的不同人工固碳途径;接着,讨论固碳途径能量的来源,特别强调非生物过程辅助的新型能量供给方式;随后,列举第三代生物炼制的生产实例,并讨论其在工业应用过程中值得注意的问题;最后,展望第三代生物炼制的主要优势和面临的挑战,并对未来的研究方向进行讨论.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号