首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
系统科学   1篇
  2023年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.

A uniform experimental design (UED) is an extremely used powerful and efficient methodology for designing experiments with high-dimensional inputs, limited resources and unknown underlying models. A UED enjoys the following two significant advantages: (i) It is a robust design, since it does not require to specify a model before experimenters conduct their experiments; and (ii) it provides uniformly scatter design points in the experimental domain, thus it gives a good representation of this domain with fewer experimental trials (runs). Many real-life experiments involve hundreds or thousands of active factors and thus large UEDs are needed. Constructing large UEDs using the existing techniques is an NP-hard problem, an extremely time-consuming heuristic search process and a satisfactory result is not guaranteed. This paper presents a new effective and easy technique, adjusted Gray map technique (AGMT), for constructing (nearly) UEDs with large numbers of four-level factors and runs by converting designs with s two-level factors and n runs to (nearly) UEDs with 2t?1s four-level factors and 2tn runs for any t ≥ 0 using two simple transformation functions. Theoretical justifications for the uniformity of the resulting four-level designs are given, which provide some necessary and/or sufficient conditions for obtaining (nearly) uniform four-level designs. The results show that the AGMT is much easier and better than the existing widely used techniques and it can be effectively used to simply generate new recommended large (nearly) UEDs with four-level factors.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号