首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
系统科学   1篇
现状及发展   7篇
研究方法   17篇
综合类   36篇
自然研究   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2008年   8篇
  2007年   3篇
  2006年   6篇
  2005年   7篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1996年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1972年   1篇
排序方式: 共有62条查询结果,搜索用时 109 毫秒
1.
ABSTRACT

This study is primarily directed to the most poorly known species of the genus Trichomycterus, comprising five nominal species (T. florensis, T. immaculatus, T. nigricans, T. paquequerensis and T. santaeritae) endemic to south-eastern Brazil. One of them, T. nigricans, is the type species of the genus, involved in taxonomic problems for over 150 years. A detailed historical review, accompanied by examination of type specimens and recent collections, revealed that the correct type locality of T. nigricans is in the vicinity of Rio de Janeiro, not Santa Catarina as commonly appears in the literature; specimens previously misidentified as T. nigricans from Santa Catarina belong to a possibly undescribed species of the genus Cambeva; T. paquequerensis is a synonym of T. immaculatus, and T. florensis is a synonym of T. santaeritae; and the hypothesis that T. santaeritae is closely related to the Amazon Sarcoglanidinae is refuted. The three valid species are redescribed. These species are members of a clade also including T. caipora that is highly supported by molecular data, diagnosed by a pronounced posterior maxillary process and caudal fin emarginate at least in larger specimens. A subclade comprising T. caipora, T. nigricans and T. santaeritae is diagnosed by a long maxilla and a bifid anterior extremity of hypobranchial 3.  相似文献   
2.
Symmetry-breaking interactions have a crucial role in many areas of physics, ranging from classical ferrofluids to superfluid (3)He and d-wave superconductivity. For superfluid quantum gases, a variety of new physical phenomena arising from the symmetry-breaking interaction between electric or magnetic dipoles are expected. Novel quantum phases in optical lattices, such as chequerboard or supersolid phases, are predicted for dipolar bosons. Dipolar interactions can also enrich considerably the physics of quantum gases with internal degrees of freedom. Arrays of dipolar particles could be used for efficient quantum information processing. Here we report the realization of a chromium Bose-Einstein condensate with strong dipolar interactions. By using a Feshbach resonance, we reduce the usual isotropic contact interaction, such that the anisotropic magnetic dipole-dipole interaction between 52Cr atoms becomes comparable in strength. This induces a change of the aspect ratio of the atom cloud; for strong dipolar interactions, the inversion of ellipticity during expansion (the usual 'smoking gun' evidence for a Bose-Einstein condensate) can be suppressed. These effects are accounted for by taking into account the dipolar interaction in the superfluid hydrodynamic equations governing the dynamics of the gas, in the same way as classical ferrofluids can be described by including dipolar terms in the classical hydrodynamic equations. Our results are a first step in the exploration of the unique properties of quantum ferrofluids.  相似文献   
3.
Sosulski DL  Bloom ML  Cutforth T  Axel R  Datta SR 《Nature》2011,472(7342):213-216
Sensory information is transmitted to the brain where it must be processed to translate stimulus features into appropriate behavioural output. In the olfactory system, distributed neural activity in the nose is converted into a segregated map in the olfactory bulb. Here we investigate how this ordered representation is transformed in higher olfactory centres in mice. We have developed a tracing strategy to define the neural circuits that convey information from individual glomeruli in the olfactory bulb to the piriform cortex and the cortical amygdala. The spatial order in the bulb is discarded in the piriform cortex; axons from individual glomeruli project diffusely to the piriform without apparent spatial preference. In the cortical amygdala, we observe broad patches of projections that are spatially stereotyped for individual glomeruli. These projections to the amygdala are overlapping and afford the opportunity for spatially localized integration of information from multiple glomeruli. The identification of a distributive pattern of projections to the piriform and stereotyped projections to the amygdala provides an anatomical context for the generation of learned and innate behaviours.  相似文献   
4.
Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100-1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H(2)SO(4)-H(2)O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.  相似文献   
5.
6.
Homeostasis of solid tissue is characterized by a low proliferative activity of differentiated cells while special conditions like tissue damage induce regeneration and proliferation. For some cell types it has been shown that various tissue-specific functions are missing in the proliferating state, raising the possibility that their proliferation is not compatible with a fully differentiated state. While endothelial cells are important players in regenerating tissue as well as in the vascularization of tumors, the impact of proliferation on their features remains elusive. To examine cell features in dependence of proliferation, we established human endothelial cell lines in which proliferation is tightly controlled by a doxycycline-dependent, synthetic regulatory unit. We observed that uptake of macromolecules and establishment of cell–cell contacts was more pronounced in the growth-arrested state. Tube-like structures were formed in vitro in both proliferating and non-proliferating conditions. However, functional vessel formation upon transplantation into immune-compromised mice was restricted to the proliferative state. Kaposi’s sarcoma-associated herpes virus (KSHV) infection resulted in reduced expression of endothelial markers. Upon transplantation of infected cells, drastic differences were observed: proliferation arrested cells acquired a high migratory activity while the proliferating counterparts established a tumor-like phenotype, similar to Kaposi Sarcoma lesions. The study gives evidence that proliferation governs endothelial functions. This suggests that several endothelial functions are differentially expressed during angiogenesis. Moreover, since proliferation defines the functional properties of cells upon infection with KSHV, this process crucially affects the fate of virus-infected cells.  相似文献   
7.
Suh GS  Wong AM  Hergarden AC  Wang JW  Simon AF  Benzer S  Axel R  Anderson DJ 《Nature》2004,431(7010):854-859
All animals exhibit innate behaviours in response to specific sensory stimuli that are likely to result from the activation of developmentally programmed neural circuits. Here we observe that Drosophila exhibit robust avoidance to odours released by stressed flies. Gas chromatography and mass spectrometry identifies one component of this 'Drosophila stress odorant (dSO)' as CO2. CO2 elicits avoidance behaviour, at levels as low as 0.1%. We used two-photon imaging with the Ca2+-sensitive fluorescent protein G-CaMP to map the primary sensory neurons governing avoidance to CO2. CO2 activates only a single glomerulus in the antennal lobe, the V glomerulus; moreover, this glomerulus is not activated by any of 26 other odorants tested. Inhibition of synaptic transmission in sensory neurons that innervate the V glomerulus, using a temperature-sensitive Shibire gene (Shi(ts)), blocks the avoidance response to CO2. Inhibition of synaptic release in the vast majority of other olfactory receptor neurons has no effect on this behaviour. These data demonstrate that the activation of a single population of sensory neurons innervating one glomerulus is responsible for an innate avoidance behaviour in Drosophila.  相似文献   
8.
Breidenbach MA  Brunger AT 《Nature》2004,432(7019):925-929
Clostridal neurotoxins (CNTs) are the causative agents of the neuroparalytic diseases botulism and tetanus. CNTs impair neuronal exocytosis through specific proteolysis of essential proteins called SNAREs. SNARE assembly into a low-energy ternary complex is believed to catalyse membrane fusion, precipitating neurotransmitter release; this process is attenuated in response to SNARE proteolysis. Site-specific SNARE hydrolysis is catalysed by the CNT light chains, a unique group of zinc-dependent endopeptidases. The means by which a CNT properly identifies and cleaves its target SNARE has been a subject of much speculation; it is thought to use one or more regions of enzyme-substrate interaction remote from the active site (exosites). Here we report the first structure of a CNT endopeptidase in complex with its target SNARE at a resolution of 2.1 A: botulinum neurotoxin serotype A (BoNT/A) protease bound to human SNAP-25. The structure, together with enzyme kinetic data, reveals an array of exosites that determine substrate specificity. Substrate orientation is similar to that of the general zinc-dependent metalloprotease thermolysin. We observe significant structural changes near the toxin's catalytic pocket upon substrate binding, probably serving to render the protease competent for catalysis. The novel structures of the substrate-recognition exosites could be used for designing inhibitors specific to BoNT/A.  相似文献   
9.
We have identified nonsense mutations in the gene CDSN (encoding corneodesmosin) in three families suffering from hypotrichosis simplex of the scalp (HSS; OMIM 146520). CDSN, a glycoprotein expressed in the epidermis and inner root sheath (IRS) of hair follicles, is a keratinocyte adhesion molecule. Truncated CDSN aggregates were detected in the superficial dermis and at the periphery of hair follicles. Our findings suggest that CDSN is important in normal scalp hair physiology.  相似文献   
10.
The present paper argues that ‘mature mathematical formalisms’ play a central role in achieving representation via scientific models. A close discussion of two contemporary accounts of how mathematical models apply—the DDI account (according to which representation depends on the successful interplay of denotation, demonstration and interpretation) and the ‘matching model’ account—reveals shortcomings of each, which, it is argued, suggests that scientific representation may be ineliminably heterogeneous in character. In order to achieve a degree of unification that is compatible with successful representation, scientists often rely on the existence of a ‘mature mathematical formalism’, where the latter refers to a—mathematically formulated and physically interpreted—notational system of locally applicable rules that derive from (but need not be reducible to) fundamental theory. As mathematical formalisms undergo a process of elaboration, enrichment, and entrenchment, they come to embody theoretical, ontological, and methodological commitments and assumptions. Since these are enshrined in the formalism itself, they are no longer readily obvious to either the novice or the proficient user. At the same time as formalisms constrain what may be represented, they also function as inferential and interpretative resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号