首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
丛书文集   3篇
综合类   26篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
21.
【目的】研究3种松针精油对供试菌的协同抑菌效应和机制,利用松针精油天然抑菌物质抑制微生物的生长特性,为将松针精油应用于食品、化妆品等领域提供理论依据。【方法】通过微量二倍稀释法测定黑皮油松松针精油(PTEO)、樟子松松针精油(PSEO)、红松松针精油(PKEO)对大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)、枯草芽孢杆菌(Bacillus subtilis)的抑菌效果,通过棋盘稀释法来测定其协同效果及最佳复配比,以最佳精油复配比研究其对3种供试菌的抑菌机理。【结果】3种精油单独作用时均表现出对3种供试菌较好的抑菌效果,部分复配后效果得到明显提高,针对不同微生物复配最佳抑菌配方为:E.coli用抑菌精油为PTEO和PSEO,浓度均为0.31 μL/mL; S. aureus用抑菌精油为PKEO和PTEO,浓度均为0.16 μL/mL; B. subtilis用抑菌精油为PKEO和PSEO,浓度分别为0.16、0.08 μL/mL。通过复配精油对3种供试菌的抑菌机理研究发现复配精油能够破坏菌体的正常形态,破坏细胞膜的渗透性,导致核酸等大分子物质的泄露,并且对细胞菌体蛋白的合成和积累有干扰作用。【结论】3种精油复配后表现出更好的抑菌作用,精油之间的协同作用可以减少到抑菌效果时精油的用量。  相似文献   
22.
重金属胁迫下锦葵幼苗主要生理物质变化的研究   总被引:1,自引:0,他引:1  
使用4种不同稀释倍数的废电池浸出液胁迫锦葵幼苗,在胁迫后不同时间对幼苗叶片中可溶性蛋白质含量、过氧化物脂质含量、POD(过氧化物酶)活性进行测定.结果表明,锦葵幼苗对废电池浸出液具有一定的耐受性和适应性,但高质量分数废电池浸出液对锦葵幼苗的生长有一定的抑制作用.  相似文献   
23.
在北京大学地球环境与生态系统塞罕坝实验站樟子松(Pinus sylvestris var. mongolica)人工林内设置降水控制实验,研究地下生态系统过程的两个重要指标土壤微生物量碳和微生物商对穿透雨增加或减少30%的响应。在2007年5月到9月的生长季,土壤微生物量碳和微生物商平均值分别为260.7mg/kg和1.84%,二者随土壤深度增加呈下降趋势。总体上,穿透雨增加或减少30%对土壤微生物量碳和微生物商的生长季内平均值影响不显著,但穿透雨减少30%的土壤微生物量碳及微生物商的变幅较大,变化范围分别为243.1~354.3mg/kg和1.43%~2.16%,5月最高,7月最低,表明生长季内穿透雨减少将导致土壤微生物活动的较大波动,从而可能改变地下碳过程的季节变化规律。  相似文献   
24.
25.
对河北塞罕坝机械林场樟子松(Pinus sylvestris var.mongolica)人工林采取不同的处理方式(对照(CK)、凋落物移除(-L)、凋落物添加(+L)、根系去除(-R)、凋落物和根系同时去除(-R-L)、凋落物添加和根系去除(-R+L)),基于处理后第一个生长季(2019年5—9月)的测定结果,研究不...  相似文献   
26.
辽宁章古台欧洲赤松种源苗期试验   总被引:4,自引:0,他引:4  
利用来自欧洲的13个欧洲赤松(Pinus sylvestris)种源,以当地的 樟子松(Pinus sylvestris var.mongolica)作对照开展了试验。结果发现,1a生苗木能否正常越冬成为评价种源好坏的首要因子,比利时,奥地利、法国等西欧种源生长较快,但不能正常越冬;瑞典、芬兰等北欧种源基本能正常越冬,但生长迟缓,潜力不大;波兰、爱沙尼亚种源1a生苗的越冬保存率在80%以上,2a生苗生长量与樟子松相仿且均能安全越冬,为适宜种源。  相似文献   
27.
樟子松枯死原因与防治技术研究   总被引:7,自引:0,他引:7  
根据生态环境学和现代森林病理学的原理与方法,通过多学科联合攻关,深入系统地研究了樟子松(Pinus sylvestris var.mongolica)枯死的难题,搞清了樟子松枯死的起因与机理.提出以营林措施为主的防治技术对策,为经营樟子松人工林、增强林分的生态功能提供了依据.该项研究丰富了森林病理学内客,补充了松枯梢病的研究成果,为林间生产应用提供了科学依据和技术方法。  相似文献   
28.
【目的】 通过非线性和多种机器学习算法构建并对比不同的立木材积模型,为樟子松(Pinus sylvestris var. mongolica)立木材积的精准预测提供理论依据。【方法】 以大兴安岭图强林业局184株樟子松伐倒木数据为基础,建立非线性二元材积模型(NLR),并通过十折交叉检验和袋外数据(OOB)误差检验的方法得到3种最优机器学习算法,包括:反向神经网络(BP)、ε-支持向量回归(ε-SVR)和随机森林(RF)。对比分析不同模型间的差异,得到最优立木材积模型。【结果】 机器学习算法在立木材积的拟合和预测中均优于传统二元材积模型,具体拟合结果排序为RF>BP>ε-SVR> NLR。其中RF的决定系数(R2)比传统模型的提高了2.00%,均方根误差(RMSE)、相对均方根误差(RMSE%)、平均绝对误差(MAE)分别降低了22.90%、22.93%、36.34%,且与真实值相比平均相对误差(MRB)的绝对值更低,证明了RF在立木材积预测中的优越性。【结论】 机器学习算法作为一种新兴的建模方法可以有效地提高立木材积的预测精度,为森林资源的精准调查和经营管理提供新的解决方案。  相似文献   
29.
【目的】研究滴灌、漫灌和对照3种处理方式下樟子松(Pinus sylvestris var. mongolica)生长状况和土壤水分运移规律,探讨其生长、光合、蒸腾特性和水分运移对不同灌溉技术的响应,为在干旱、半干旱地区高效栽培樟子松提供参考。【方法】以内蒙古大青山国家级自然保护区的樟子松林为研究对象,基于单因素方差分析比较不同灌溉方式下樟子松的生长(地径、树高、冠幅、抽穗长和生物量)与光合特性[光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)和水分利用效率(EWUE)];采用土壤剖面观测法比较不同灌溉方式和灌溉时间下土壤水分垂直和水平运移的变化规律,并利用经验模型对土壤水分运移轮廓进行模拟。【结果】①滴灌处理下樟子松的地径、树高、冠幅、抽穗长和生物量分别比漫灌方式下高1.5 cm、0.5 m、10.0 cm、5.9 cm和11.5 kg,分别比对照高3.4 cm、0.9 m、60.0 cm、7.2 cm和2.5 kg;②滴灌处理下樟子松的光合速率、蒸腾速率、气孔导度和胞间CO2浓度显著高于漫灌和对照(P < 0.05),各种灌溉方式下的上述指标大小具体表现为滴灌>漫灌>对照;水分利用效率大小表现为对照>滴灌>漫灌,表明樟子松可在较低的土壤含水量条件下生长;③在灌溉2、4和6 h后,樟子松林地滴灌比漫灌处理下土壤湿润锋的垂直运移距离和停灌后最终垂直运移距离深,两种灌溉方式下3种不同灌溉时长的土壤湿润锋的最大水平运移距离都出现在0~20 cm土层,然而停灌后的垂直运移距离以滴灌>漫灌;④利用经验模型对土壤湿润体轮廓进行模拟,设定:为垂直方向上任意位置处土壤水分水平运移距离(i=1,2,3,4);LMR为土壤水分水平最大运移距离;RMH为垂直方向上任意位置处土壤水分垂直运移相对距离;ai为模型参数。则滴灌和漫灌的最优模型分别为多项式模型(MR1)和Baldwin模型(MR4), $M_{\mathrm{R} 1}=L_{\mathrm{MR}}\left[a_{1}\left(R_{\mathrm{MH}}-1\right)+a_{2}\left(R_{\mathrm{MH}}^{2}-1\right)+a_{3}\left(R_{\mathrm{MH}}{ }^{3}-1\right)+a_{4}\left(R_{\mathrm{MH}}^{4}-1\right)\right]$; $M_{\mathrm{R} 4}=a_{1}+\left[\left(R_{\mathrm{MH}}-1\right) /\left(R_{\mathrm{MH}}+1\right)\right]+a_{2}\left(R_{\mathrm{MH}}-1\right)$。【结论】在北方干旱区,滴灌区樟子松的生长和光合特性明显优于漫灌;在持续灌溉2、4和6 h后,滴灌试验区60 cm土层以上的土壤湿润锋在最终水平运移距离上均大于漫灌区。将滴灌技术应用于樟子松林木培育,有利于根系吸收水分和促进树木生长,且樟子松的光合特性受水分利用效率影响,合理的灌溉可改善林木的生长机制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号