排序方式: 共有95条查询结果,搜索用时 0 毫秒
91.
在再生核空间W23[0,1]中给出求解二阶非线性常微分方程组的精确解表达式的方法,此精确解是用级数表示的.证明它的n-截断函数un(x),vn(x)收敛于方程组的精确解u(x),v(x).无论方程组是线性还是非线性,奇异还是非奇异,都可以用本方法求解.算法实例说明此算法是高效的. 相似文献
92.
在再生核空间W22[0, 1]中讨论一类积分微分方程的求解方法,给出方程的准确解,准确解用级数形式表达,通过截断准确解的级数表达式可直接得到方程的近似解,并且近似解一致收敛于准确解;数值试验说明此方法是有效的. 相似文献
93.
陈湘 《湖北大学学报(自然科学版)》2006,28(2):135-137
运用Rademacher复杂度估计1-范数软间隔分类器的错分风险,所得到风险的界因与具体的数据有关,故分类器能针对不同的数据提供更确切的界. 相似文献
94.
利用再生核空间讨论了无穷线性方程组的求解,给出了无穷线性方程组Ay=b精确解的表达式.假定A是l2→l2的有界线性算子,建立l2和再生核空间的1-1映射,将方程Ay=b转化为再生核空间中的方程Ku=f,给出Ku=f的精确解u的表达式;最后给出无穷线性方程组的精确解.实际数值计算中,因为方程Ku=f的精确解是以级数形式给出的,级数截断得到近似解,从而得到无穷线性方程组Ay=b的近似解.还给出了无穷线性方程组有解的充分必要条件. 相似文献
95.