首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2996篇
  免费   112篇
  国内免费   208篇
系统科学   31篇
丛书文集   65篇
教育与普及   31篇
理论与方法论   3篇
现状及发展   409篇
综合类   2775篇
自然研究   2篇
  2024年   3篇
  2023年   11篇
  2022年   23篇
  2021年   24篇
  2020年   31篇
  2019年   30篇
  2018年   35篇
  2017年   42篇
  2016年   42篇
  2015年   49篇
  2014年   118篇
  2013年   74篇
  2012年   126篇
  2011年   136篇
  2010年   96篇
  2009年   169篇
  2008年   161篇
  2007年   186篇
  2006年   212篇
  2005年   221篇
  2004年   200篇
  2003年   169篇
  2002年   173篇
  2001年   133篇
  2000年   125篇
  1999年   120篇
  1998年   72篇
  1997年   82篇
  1996年   70篇
  1995年   56篇
  1994年   60篇
  1993年   47篇
  1992年   48篇
  1991年   50篇
  1990年   33篇
  1989年   26篇
  1988年   17篇
  1987年   13篇
  1986年   11篇
  1985年   14篇
  1984年   8篇
排序方式: 共有3316条查询结果,搜索用时 15 毫秒
271.
The myelin proteolipid protein (PLP) gene (Plp) encodes the most abundant protein found in myelin from the central nervous system (CNS). Expression of the gene is regulated in a spatiotemporal manner with maximal levels of expression occurring in oligodendrocytes during the active myelination period of CNS development, although other cell types in the CNS as well as in the periphery can express the gene to a much lower degree. In oligodendrocytes, Plp gene expression is tightly regulated. Underexpression or overexpression of the gene has been shown to have adverse effects in humans and other vertebrates. In light of this strict control, this review provides an overview of the current knowledge of Plp gene regulation.Received 4 August 2003; received after revision 17 September 2003; accepted 24 September 2003  相似文献   
272.
In less than a decade the green fluorescent protein (GFP) has become one of the most popular tools for cell biologists for the study of dynamic processes in vivo. GFP has revolutionised the scientific approach for the study of vital organelles, such as the Golgi apparatus. As Golgi proteins can be tagged with GFP, in most cases without altering their targeting and function, it is a great substitute to conventional dyes used in the past to highlight this compartment. In this review, we cover the application of GFP and its spectral derivatives in the study of Golgi dynamics in mammalian and plant cells. In particular, we focus on the technique of selective photobleaching known as fluorescence recovery after photobleaching, which has successfully shed light on essential differences in the biology of the Golgi apparatus in mammalian and plant cells.  相似文献   
273.
274.
275.
Enzymes and receptors in the leukotriene cascade   总被引:7,自引:0,他引:7  
Leukotrienes are a family of paracrine hormones derived from the oxidative metabolism of arachidonic acid. These lipid mediators are recognized as important signal molecules in a variety of inflammatory and allergic conditions affecting the skin, joints, gastrointestinal and respiratory systems, in particular asthma. Such conditions are typified by local pain, tissue edema, hyperemia and functional losses. In the tissues, immunocompetent cells accumulate at the site of injury which contribute to tissue damage and perpetuation of the disease process. Leukotrienes can elicit most, if not all, of these signs and symptoms. Thus, leukotriene B4 is one of the most powerful chemotactic agents known to date and participates in the recruitment of leukocytes. The cysteinyl leukotrienes, on the other hand, contract smooth muscles, particularly in the peripheral airways and microcirculation. Recently, drugs which block the formation and action of leukotrienes have been introduced as novel antiasthmatic medications. This chapter reviews the biochemistry, molecular biology and cell biology of the key enzymes and cognate receptors in the leukotriene cascade.  相似文献   
276.
In eukaryotes, the ubiquitin-mediated protein degradation pathway has been shown to control several key biological processes such as cell division, development, metabolism and immune response. F-box proteins, as a part of SCF (Skp1-Cullin (or Cdc53)-F-box) complex, functioned by interacting with substrate proteins, leading to their subsequent degradation by the 26S proteasome. To date, several F-box proteins identified in Arabidopsis and Antirrhinum have been shown to play important roles in auxin signal transduction, floral organ formation, flowering and leaf senescence. Arabidopsis genome sequence analysis revealed that it encodes over 1000 predicted F-box proteins accounting for about 5% of total predicted proteins. These results indicate that the ubiquitin-mediated protein degradation involving the F-box proteins is an important mechanism controlling plant gene expression. Here, we review the known F-box proteins and their functionsin flowering plants.  相似文献   
277.
Flavocytochrome b 558 is the catalytic core of the respiratory-burst oxidase, an enzyme complex that catalyzes the NADPH-dependent reduction of O2 into the superoxide anion O2 - in phagocytic cells. Flavocytochrome b 558 is anchored in the plasma membrane. It is a heterodimer that consists of a large glycoprotein gp91phox (phox for phagocyte oxidase) (β subunit) and a small protein p22phox (α subunit). The other components of the respiratory-burst oxidase are water-soluble proteins of cytosolic origin, namely p67phox, p47phox, p40phox and Rac. Upon cell stimulation, they assemble with the membrane-bound flavocytochrome b 558 which becomes activated and generates O2 -. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections, illustrating the role of O2 - and the derived metabolites H2O2 and HOCl in host defense against invading microorganisms. The electron carriers, FAD and hemes b, and the binding site for NADPH are confined to the gp91phox subunit of flavocytochrome b 558 . The p22phox subunit serves as a docking site for the cytosolic phox proteins. This review provides an overview of current knowledge on the structural organization of the O2 --generating flavocytochrome b 558 , its kinetics, its mechanism of activation and the regulation of its biosynthesis. Homologues of gp91phox, called Nox and Duox, are present in a large variety of non-phagocytic cells. They exhibit modest O2 --generating oxidase activity, and some act as proton channels. Their role in various aspects of signal transduction is currently under investigation and is briefly discussed. Received 28 May 2002; received after revision 20 June 2002; accepted 24 June 2002  相似文献   
278.
Perchloric acid-soluble protein (PSP) may play an important role in the regulation of cellular physiological functions because it has been highly conserved throughout evolution; however, this role has not been well elucidated. In previous reports, we suggested that PSP regulates cell proliferation. In this study, we examined the effect of PSP expression on proliferation of the normal rat kidney cell line NRK-52E, the rat hepatocyte cell line RLN-10, and the rat hepatoma cell line dRLh-84. Cells transfected with pcDNA-sense-PSP (pcDNA-S-PSP) over-expressed PSP mRNA and protein, and cell proliferation of the transfected cells was suppressed compared with that of cells transfected with pcDNA-empty (pcDNA-E). Cell viability of pcDNA-S-PSP-transfected cells was similar to that of pcDNA-E-transfected cells. Thus, over-expression of PSP suppresses cell proliferation without any influence on cell viability. These findings are the first to report an inhibitory activity of PSP on cell proliferation. Received 27 April 2001; received after revision 8 June 2001; accepted 8 June 2001  相似文献   
279.
The melanocortins are a family of bioactive peptides derived from proopiomelanocortin, and share significant structural similarity. Those peptides are best known for their stimulatory effects on pigmentation and steroidogenesis. Melanocortins are synthesized in various sites in the central nervous system and in peripheral tissues, and participate in regulating multiple physiological functions. Research during the past decade has provided evidence that melanocortins elicit their diverse biological effects by binding to a distinct family of G protein-coupled receptors with seven transmembrane domains. To date, five melanocortin receptor genes have been cloned and characterized. Those receptors differ in their tissue distribution and in their ability to recognize the various melanocortins and the physiological antagonists, agouti signaling protein and agouti-related protein. These advances have opened new horizons for exploring the significance of melanocortins, their antagonists, and their receptors in a variety of important physiological functions. Received 5 October 2000; accepted 10 November 2000  相似文献   
280.
Advances in methods of structure determination have led to the accumulation of large amounts of protein structural data. Some 500 distinct protein folds have now been characterized, representing one-third of all globular folds that exist. The range of known structural types and the relatively large fraction of the protein universe that has already been sampled have greatly facilitated the discovery of some unifying principles governing protein structure and evolutionary relationships. These include a highly skewed distribution of topological arrangements of secondary-structure elements that favors a few very common connectivities and a highly skewed distribution in the capacity of folds to accommodate unrelated sequences. These and other observations suggest that the number of folds is far fewer than the number of genes, and that the fold universe is dominated by a small number of giant attractors that accommodate large numbers of unrelated sequences. Thus all basic protein folds will likely be determined in the near future, laying the foundation for a comprehensive understanding of the biochemical and cellular functions of whole organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号