首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4394篇
  免费   216篇
  国内免费   380篇
系统科学   477篇
丛书文集   88篇
教育与普及   17篇
理论与方法论   5篇
现状及发展   116篇
综合类   4287篇
  2024年   67篇
  2023年   133篇
  2022年   173篇
  2021年   185篇
  2020年   177篇
  2019年   112篇
  2018年   89篇
  2017年   118篇
  2016年   120篇
  2015年   157篇
  2014年   214篇
  2013年   210篇
  2012年   269篇
  2011年   266篇
  2010年   204篇
  2009年   235篇
  2008年   217篇
  2007年   290篇
  2006年   202篇
  2005年   216篇
  2004年   196篇
  2003年   174篇
  2002年   150篇
  2001年   123篇
  2000年   92篇
  1999年   102篇
  1998年   81篇
  1997年   58篇
  1996年   60篇
  1995年   51篇
  1994年   36篇
  1993年   39篇
  1992年   42篇
  1991年   33篇
  1990年   26篇
  1989年   30篇
  1988年   20篇
  1987年   10篇
  1986年   4篇
  1985年   2篇
  1981年   3篇
  1955年   4篇
排序方式: 共有4990条查询结果,搜索用时 15 毫秒
51.
Financial distress prediction (FDP) has been widely considered as a promising approach to reducing financial losses. While financial information comprises the traditional factors involved in FDP, nonfinancial factors have also been examined in recent studies. In light of this, the purpose of this study is to explore the integrated factors and multiple models that can improve the predictive performance of FDP models. This study proposes an FDP framework to reveal the financial distress features of listed Chinese companies, incorporating financial, management, and textual factors, and evaluating the prediction performance of multiple models in different time spans. To develop this framework, this study employs the wrapper-based feature selection method to extract valuable features, and then constructs multiple single classifiers, ensemble classifiers, and deep learning models in order to predict financial distress. The experiment results indicate that management and textual factors can supplement traditional financial factors in FDP, especially textual ones. This study also discovers that integrated factors collected 4 years prior to the predicted benchmark year enable a more accurate prediction, and the ensemble classifiers and deep learning models developed can achieve satisfactory FDP performance. This study makes a novel contribution as it expands the predictive factors of financial distress and provides new findings that can have important implications for providing early warning signals of financial risk.  相似文献   
52.
As a representative emerging financial market, the Chinese stock market is more prone to volatility because of investor sentiment. It is reasonable to use efficient predictive methods to analyze the influence of investor sentiment on stock price forecasting. This paper conducts a comparative study about the predictive performance of artificial neural network, support vector regression (SVR) and autoregressive integrated moving average and selects SVR to study the asymmetry effect of investor sentiment on different industry index predictions. After studying the relevant financial indicators, the results divide the Shenwan first-class industries into two types and show that the industries affected by investor sentiment are composed of young companies with high growth and high operative pressure and there are a great number of investment bubbles in those companies.  相似文献   
53.
针对扶贫领域中贫困、脱贫和返贫状态预测不准确,影响状态变迁的关键因素难以识别的问题,从扶贫基础数据和多个行业数据中提取8个关键特征和22个观测状态,构建观察状态和隐含状态关联关系,建立扶贫对象状态预测隐马尔可夫模型(hidden markov model,HMM)。以某深度贫困县连续3年的数据为样本,进行参数训练、测试实验和结果验证,结果表明该方法对返贫、贫困和脱贫状态有较强的预测能力,误差率较低,且能准确识别出影响返贫的关键要素。该方法对指导精准扶贫工作具有非常重要的实际意义。  相似文献   
54.
For forecasting nonstationary and nonlinear energy prices time series, a novel adaptive multiscale ensemble learning paradigm incorporating ensemble empirical mode decomposition (EEMD), particle swarm optimization (PSO) and least square support vector machines (LSSVM) with kernel function prototype is developed. Firstly, the extrema symmetry expansion EEMD, which can effectively restrain the mode mixing and end effects, is used to decompose the energy price into simple modes. Secondly, by using the fine‐to‐coarse reconstruction algorithm, the high‐frequency, low‐frequency and trend components are identified. Furthermore, autoregressive integrated moving average is applicable to predicting the high‐frequency components. LSSVM is suitable for forecasting the low‐frequency and trend components. At the same time, a universal kernel function prototype is introduced for making up the drawbacks of single kernel function, which can adaptively select the optimal kernel function type and model parameters according to the specific data using the PSO algorithm. Finally, the prediction results of all the components are aggregated into the forecasting values of energy price time series. The empirical results show that, compared with the popular prediction methods, the proposed method can significantly improve the prediction accuracy of energy prices, with high accuracy both in the level and directional predictions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
55.
A sample‐based method in Kolsrud (Journal of Forecasting 2007; 26 (3): 171–188) for the construction of a time‐simultaneous prediction band for a univariate time series is extended to produce a variable‐ and time‐simultaneous prediction box for a multivariate time series. A measure of distance based on the L ‐norm is applied to a learning sample of multivariate time trajectories, which can be mean‐ and/or variance‐nonstationary. Based on the ranking of distances to the centre of the sample, a subsample of the most central multivariate trajectories is selected. A prediction box is constructed by circumscribing the subsample with a hyperrectangle. The fraction of central trajectories selected into the subsample can be calibrated by bootstrap such that the expected coverage of the box equals a prescribed nominal level. The method is related to the concept of data depth, and thence modified to increase coverage. Applications to simulated and empirical data illustrate the method, which is also compared to several other methods in the literature adapted to the multivariate setting. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
56.
We investigate the optimal structure of dynamic regression models used in multivariate time series prediction and propose a scheme to form the lagged variable structure called Backward‐in‐Time Selection (BTS), which takes into account feedback and multicollinearity, often present in multivariate time series. We compare BTS to other known methods, also in conjunction with regularization techniques used for the estimation of model parameters, namely principal components, partial least squares and ridge regression estimation. The predictive efficiency of the different models is assessed by means of Monte Carlo simulations for different settings of feedback and multicollinearity. The results show that BTS has consistently good prediction performance, while other popular methods have varying and often inferior performance. The prediction performance of BTS was also found the best when tested on human electroencephalograms of an epileptic seizure, and for the prediction of returns of indices of world financial markets.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
57.
We consider the problem of online prediction when it is uncertain what the best prediction model to use is. We develop a method called dynamic latent class model averaging, which combines a state‐space model for the parameters of each of the candidate models of the system with a Markov chain model for the best model. We propose a polychotomous regression model for the transition weights to assume that the probability of a change in time depends on the past through the values of the most recent time periods and spatial correlation among the regions. The evolution of the parameters in each submodel is defined by exponential forgetting. This structure allows the ‘correct’ model to vary over both time and regions. In contrast to existing methods, the proposed model naturally incorporates clustering and prediction analysis in a single unified framework. We develop an efficient Gibbs algorithm for computation, and we demonstrate the value of our framework on simulated experiments and on a real‐world problem: forecasting IBM's corporate revenue. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
58.
根据支特向量机优越的非线性拟合性能,建立变形量的时间序列预测模型,滚动预测围岩变形量,提高了预测模型的训练速度和预测推广能力。该方法用于西乡-固戍盾构段围岩变形预测,并与BP神经网络预测进行比较。结果表明这种模型可预测区间较长且具有较高的准确度,能够科学地指导现场施工和监测。  相似文献   
59.
本文基于区域叠合有限元技术预测三维四向编织复合材料弹性性能。在该方法中,分别建立相互独立的纤维增强相有限元模型和复合材料整体区域(包括所有增强相和基体相所占几何空间)有限元模型,两相模型在空间叠合组成复合材料模型,运用节点自由度耦合技术使两相模型满足变形协调关系,通过对两相模型赋予适当的材料属性以使所建复合材料模型具有与实际复合材料等效的力学特性。该方法较传统方法显著缩短了建模时间,降低了建模难度。区域叠合法的数值模拟结果与传统方法预测结果一致。本文的研究为进一步研究编织复合材料非线性宏观力学特性和渐进损伤过程模拟奠定基础。  相似文献   
60.
在最新的视频编码标准H.264/AVC中,运动预测的精度达到1/4像素。为了提高运动预测的速度,要求实现运动预测过程的SIMD并行运算,其间遇到的最大问题就是1/4像素精度参考图像的传统储存方式不适合并行操作,针对此问题提出了一种新的适合并行操作的参考图像组织方法,并采用Intel MMX和SSE技术实现了运动预测过程的SIMD并行运算,减少了整个运动预测过程消耗的时间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号