全文获取类型
收费全文 | 4354篇 |
免费 | 159篇 |
国内免费 | 359篇 |
专业分类
系统科学 | 403篇 |
丛书文集 | 193篇 |
教育与普及 | 6篇 |
理论与方法论 | 10篇 |
现状及发展 | 190篇 |
综合类 | 4070篇 |
出版年
2024年 | 14篇 |
2023年 | 23篇 |
2022年 | 53篇 |
2021年 | 55篇 |
2020年 | 64篇 |
2019年 | 57篇 |
2018年 | 48篇 |
2017年 | 56篇 |
2016年 | 55篇 |
2015年 | 97篇 |
2014年 | 179篇 |
2013年 | 150篇 |
2012年 | 217篇 |
2011年 | 271篇 |
2010年 | 229篇 |
2009年 | 232篇 |
2008年 | 248篇 |
2007年 | 306篇 |
2006年 | 255篇 |
2005年 | 254篇 |
2004年 | 260篇 |
2003年 | 190篇 |
2002年 | 184篇 |
2001年 | 160篇 |
2000年 | 146篇 |
1999年 | 138篇 |
1998年 | 94篇 |
1997年 | 119篇 |
1996年 | 110篇 |
1995年 | 86篇 |
1994年 | 85篇 |
1993年 | 75篇 |
1992年 | 69篇 |
1991年 | 54篇 |
1990年 | 65篇 |
1989年 | 58篇 |
1988年 | 44篇 |
1987年 | 33篇 |
1986年 | 15篇 |
1985年 | 6篇 |
1984年 | 5篇 |
1983年 | 4篇 |
1982年 | 6篇 |
1981年 | 2篇 |
1955年 | 1篇 |
排序方式: 共有4872条查询结果,搜索用时 4 毫秒
41.
针对傅里叶-贝塞尔变换(FBT)难以估计和有效分离多分量LFM信号的问题,提出了一种k分辨-FB(k-FB)级数展开结合dechirp的信号分离与估计算法。在FB级数的基础上引入k分辨参数,通过理论推导,得出了信号频率与级数的关系,证明了参数估计精度与k取值正相关。通过解线频调和k-FB级数计算,实现了信号分离重构和参数估计。在不同信噪比、信号功率比和k分辨条件下对信号的分离精度进行了仿真研究,并与基于分数阶傅里叶变换(FrFT)的方法进行了对比。仿真结果验证了算法的有效性。 相似文献
42.
从新的角度证明了分组数据下指数分布总体均值的极大似然估计(MLE)的渐进正态性,给出了该均值的渐进置信区间。通过Monte Carlo模拟比较,发现该置信区间优于CHEN和MIE得到的置信区间。 相似文献
43.
具有混合时滞的脉冲Cohen-Grossberg神经网络的指数耗散性 总被引:2,自引:0,他引:2
通过建立一个脉冲时滞微分不等式,并利用M-锥的特性,作者得到了具有混合时滞的脉冲Cohen-Grossberg神经网络指数耗散的充分条件,推广了早期的相关结果. 相似文献
44.
45.
46.
针对人工调配作战资源及规划方案效率低下的问题,本文提出一种基于概率图的作战任务智能规划方法,通过统计分析判定任务间因果关系,采用GNN抽取任务中的关键事件构建概率图并计算任务规划方案成功的概率,进而基于时间序列方法预测战场态势变化,实现辅助指挥员智能决策。最后,本文在某联合登岛案例中开展了方法验证,结果表明,所提出的方法可成功实现任务规划并具有可解释性,可实现对战场态势变化的预测和快速响应,在战场上为军队提供强有力的支持。 相似文献
47.
We investigate the accuracy of capital investment predictors from a national business survey of South African manufacturing. Based on data available to correspondents at the time of survey completion, we propose variables that might inform the confidence that can be attached to their predictions. Having calibrated the survey predictors' directional accuracy, we model the probability of a correct directional prediction using logistic regression with the proposed variables. For point forecasting, we compare the accuracy of rescaled survey forecasts with time series benchmarks and some survey/time series hybrid models. In addition, using the same set of variables, we model the magnitude of survey prediction errors. Directional forecast tests showed that three out of four survey predictors have value but are biased and inefficient. For shorter horizons we found that survey forecasts, enhanced by time series data, significantly improved point forecasting accuracy. For longer horizons the survey predictors were at least as accurate as alternatives. The usefulness of the more accurate of the predictors examined is enhanced by auxiliary information, namely the probability of directional accuracy and the estimated error magnitude. 相似文献
48.
Daumantas Bloznelis 《Journal of forecasting》2018,37(2):151-169
This study establishes a benchmark for short‐term salmon price forecasting. The weekly spot price of Norwegian farmed Atlantic salmon is predicted 1–5 weeks ahead using data from 2007 to 2014. Sixteen alternative forecasting methods are considered, ranging from classical time series models to customized machine learning techniques to salmon futures prices. The best predictions are delivered by k‐nearest neighbors method for 1 week ahead; vector error correction model estimated using elastic net regularization for 2 and 3 weeks ahead; and futures prices for 4 and 5 weeks ahead. While the nominal gains in forecast accuracy over a naïve benchmark are small, the economic value of the forecasts is considerable. Using a simple trading strategy for timing the sales based on price forecasts could increase the net profit of a salmon farmer by around 7%. 相似文献
49.
An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting 下载免费PDF全文
Bangzhu Zhu Xuetao Shi Julien Chevallier Ping Wang Yi‐Ming Wei 《Journal of forecasting》2016,35(7):633-651
For forecasting nonstationary and nonlinear energy prices time series, a novel adaptive multiscale ensemble learning paradigm incorporating ensemble empirical mode decomposition (EEMD), particle swarm optimization (PSO) and least square support vector machines (LSSVM) with kernel function prototype is developed. Firstly, the extrema symmetry expansion EEMD, which can effectively restrain the mode mixing and end effects, is used to decompose the energy price into simple modes. Secondly, by using the fine‐to‐coarse reconstruction algorithm, the high‐frequency, low‐frequency and trend components are identified. Furthermore, autoregressive integrated moving average is applicable to predicting the high‐frequency components. LSSVM is suitable for forecasting the low‐frequency and trend components. At the same time, a universal kernel function prototype is introduced for making up the drawbacks of single kernel function, which can adaptively select the optimal kernel function type and model parameters according to the specific data using the PSO algorithm. Finally, the prediction results of all the components are aggregated into the forecasting values of energy price time series. The empirical results show that, compared with the popular prediction methods, the proposed method can significantly improve the prediction accuracy of energy prices, with high accuracy both in the level and directional predictions. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
50.
研究了下侧D irichlet级数和下侧随机D irichlet级数在左半平面,任何左半带形以及左半水平直线的增长性,型之间的关系。 相似文献