首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   2篇
  国内免费   7篇
教育与普及   3篇
综合类   249篇
  2024年   1篇
  2021年   1篇
  2020年   4篇
  2019年   7篇
  2018年   3篇
  2017年   6篇
  2016年   11篇
  2015年   10篇
  2014年   7篇
  2013年   3篇
  2012年   10篇
  2011年   10篇
  2010年   10篇
  2009年   18篇
  2008年   16篇
  2007年   25篇
  2006年   10篇
  2005年   12篇
  2004年   23篇
  2003年   13篇
  2002年   7篇
  2001年   9篇
  2000年   8篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
排序方式: 共有252条查询结果,搜索用时 15 毫秒
131.
Cathodoluminescence spectroscopic analysis of zircons in the uppermost sanukites of the early Cretaceous Yixian Formation in Western Liaoning reveals zoning structures of the zircons in the volcanic rocks. LA-ICP-MS chronometry shows that the central part of the zircons is remnant zircon with a U-Pb dating of 254 Ma, which is consistent with the age of the Early Mesozoic underplating granulites, and that the periphery is zircon crystallizing out of the host magma with a U-Pb dating of 116 Ma, which is highly consistent with the Ar-Ar dating of the host volcanic rocks. Compositions of the clinopyroxenes xenocrystals in the sanukites are similar to those of the clinopyroxenes in the underplating granulites, indicating that the granulites accreted to the lower crust in the Early Mesozoic have been reformed and disrupted by the upwelling diapers of the asthenosphere and taken part in formation of the sanukites in the Late Mesozoic.  相似文献   
132.
The eastern Xing’an-Mongolian (Xing-Meng) Orogenic Belt (XMOB) is one of the important areas of porphyry copper (Cu)-molybdenum (Mo) deposits in China. However, studies on the exact ages of mineralization and their geodynamic significance are very limited. In this study, granodioritic rocks from the Duobaoshan Cu deposit and Daheishan Mo deposit were selected to make zircon SHRIMP U-Pb analyses in order to constrain their mineralization ages. Geochronological data indicate that two episodes of mineralization took place in the Duobaoshan Cu deposits. The granodiorite related to the Duobaoshan porphyry Cu deposit was formed in the Early Paleozoic with zircon U-Pb age of 485±8 Ma, whereas the granodiorites related to the Sankuanggou skarn-type Cu deposit were emplaced in the Jurassic with zircon U-Pb ages of 176±3 and 177±3 Ma. In the Daheishan area of Jilin Province, the emplacement age of the granodiorite porphyry related to the porphyry Mo deposit was dated at 170±3 Ma, and the unmineralized monzogranite at 178±3 Ma. Therefore, two episodes of Cu-Mo mineralization were developed in the eastern XMOB, at ~485 Ma and ~175 Ma, respectively. Based on the geological history and spatial-temporal distribution of the granitoids in northeastern (NE) China, it is proposed that the Duobaoshan Cu deposit was related to the collision of the Xing’an and Erguna blocks in the Early Paleozoic, and the Sankuanggou Cu and Daheishan Mo deposits were related to subduction of the Paleo-Pacific plate during the Jurassic.  相似文献   
133.
SHRIMP U-Pb zircon dating was carried out for the Daohugou Biota near Ningcheng of Inner Mongolia and for lavas overlying or underlying sala-mander-bearing strata at Reshuitang in Lingyuan of West Liaoning. The results suggest that the Dao- hugou Biota occurred at an interval from 168 Ma to 164―152 Ma. Both the Daohugou Biota and the salamander-bearing fossil assemblage are the same biota and thus developed from 168 to 152 Ma, i.e. from late Middle Jurassic to the early Late Jurassic. The Daohugou Biota-bearing rocks, resting on the Jiulongshan Formation in disconformity and being overlain in unconformity by Late Jurassic Tuchengzi Formation and Early Cretaceous rocks containing the Jehol Biota, are mainly composed of volcanic-sedi- mentary rocks in a normal sequence. It is recom- mended that the Daohugou Biota and the related stratigraphy should be correlated with the Tiaojishan Formation (Lanqi Formation in West Liaoning) or its synchronous rocks. It is suggested that the Dao- hugou Biota and the Jehol Biota would be neither taken into one biota nor considered as the earliest elements of the Jehol Biota. The Daohugou Biota and the related rocks and the Yixian Formation were respectively formed in different periods of volcanic-sedimentary tectonics.  相似文献   
134.
Located in the eastern portion of the Xing'an-Mongolian Orogenic Belt (XMOB), the Xinkailing-Kele complex has previously been considered to be Precambrian metamorphic rocks, mainly according to its relatively high metamorphic grade. Our filed observation, however, revealed that the complex is composed mainly of metamorphic rocks (Kele complex), tectono-schists ("Xinkailing Group"), and granitoids (Xinkailing granitic complex). Dating on these rocks using advanced SHRIMP zircon U-Pb technique indicates that: (1) Biotite-plagioclase gneiss from the Kele complex has a protolith age of 337±7 Ma (2σ) and a metamorphic age of 216±3 Ma (2σ); (2) the tectono-schist of the "Xinkailing Group" gave a magmatic age of 292±6 Ma (2σ), indicative of felsic volcanic protolith of the schist formed in late Paleozoic time; and (3) the Menluhedingzi and Lengchuan granites of the Xinkailing granitic complex were emplaced at 167±4 (2σ) and 164±4 Ma (2σ), respectively. These results suggest that the Xinkailing-Kele c  相似文献   
135.
Inrecentyears,discoveriesofhightoultrahighpressuremetamorphicrocksatthenorthandsouthsidesoftheQinlingGroupinthenorthernpartoftheQinlingMountains(hereafterNorthQinling)haveattractedfocusattentionofgeologistsworldwide.Thenorthhigh-pressure(HP)metamorphicbelt,distributedintheareafromGuanpotoShuanghuaishunorthwardtoShizipin,LushCountyinHenanProvince,consistsmainlyofeclogiteoutcroppedaslenticularmassesofdifferentsizesinthegneissesoftheQinlingGroupclosetothesouthsideofZhuyangguan-Xiaguanfault…  相似文献   
136.
In order to constrain the formation time of high-grade metamorphic rocks in the Qilian Mountains, U-Pb zircon dating was carried out by using LA-ICPMS technique for a paragneiss of the Hualong Group in the Qilian Mountains basement series and a weakly foliated granite that intruds into the Hualong Group. Zircons from the paragneiss consist dominantly of detrital magma zircons with round or sub-round shape. They have 207Pb/206Pb ages mostly ranging from 880 to 900 Ma, with a weighted mean age of 891 ±9 Ma, which is interpreted as the magma crystallization age of its igneous provenance and can be taken as a lower age limit for the Hualong Group. Magma crystallization age for the weak-foliated granite is 875±8 Ma, which can be taken as an upper age limit for the Hualong Group. Accordingly, the formation time of the Hualong Group is constrained at sometime between 875 and 891 Ma. A few zir- cons from both paragneiss and weak-foliated granite display old inherited ages of 1000 to 1700 Ma and young metamorphic ages of Early Paleozoic. The zircon age distribution pattern confirms that the Qilian Mountains and the northern margin of Qaidam Basin had a united basement, with geotectonic affinity to the Yangtze Block. The results also reveal that sediments of the Hualong Group formed by rapid accumulation due to rapid crustal uplift-erosion. This process may result from intensive Neoproterozoic orogenesis due to assembly of the suppercontinent Rodinia.  相似文献   
137.
Zircon CL imaging and SHRIMP U-Pb dating were carried out for migmatite in the Dabie orogen. Zircons from the Manshuihe migmatite show clear core-rim structures. The cores display sector or weak zoning and low Th/U ratios of 0.01 to 0.17, indicating their precipitation from metamorphic fluid. They yield a weighted mean age of 137±5 Ma. By contrast, the rims exhibit planar or nebulous zoning with relatively high Th/U ratios of 0.35 to 0.69, suggesting their growth from metamorphic melt. They give a weighted mean age of 124±2 Ma. Zircons from the Fenghuangguan migmatite also display core-rim structures. The cores are weakly oscillatory zoned or unzoned with high Th/U ratios of 0.21 to 3.03, representing inherited zircons of magmatic origin that experienced different degrees of solid-state recrystallization. SHRIMP U-Pb analyses obtain that its protolith was emplaced at 768±12 Ma, consistent with middle Neoproterozoic ages for protoliths of most UHP metaigneous rocks in the Dabie-Sulu orogenic belt. By contrast, the rims do not show significant zoning and have very low Th/U ratios of 0.01 to 0.09, typical of zircon crystallized from metamorphic fluid. They yield a weighted 206Pb/238U age of 137±4 Ma. Taking the two case dates together, it appears that there are two episodes of zircon growth and thus migmati-tization at 137±2 Ma and 124±2 Ma, respectively, due to metamorphic dehydration and partial melting. The appearance of metamorphic dehydration corresponds to the beginning of tectonic extension thus to the tectonic switch from crustal compression to extension in the Dabie orogen. On the other hand, the partial melting is responsible for the extensional climax, resulting in formation of coeval migmatite, granitoid and granulite. They share the common protolith, the collision-thickened continental crust of mid-Neoproterozoic ages.  相似文献   
138.
Origin and tectonic evolution of the Qilian Precambrian basement on NW China were investigated using zircon U-Pb ages with collaborating stratigraphic and paleontological evidence. Zircon grains were separated from two schists, two granitic gneisses and one mylonized gneiss and dated with SHRIMP. Seventy percent of sixty-one detrital zircon ages from two schists ranges from 0.88 Ga to 3.09 Ga, mostly within 1.0 Ga to 1.8 Ga with a peak at 1.6 Ga to 1.8 Ga, and twenty percent varies from 2.0 Ga to 2.5 Ga. A few falls in the Archean and Neoproterozoic periods. The two granitic gneisses were dated 930±8 Ma and 918±14 Ma, whereas the mylonized granitic gneiss was dated 790±12 Ma. These ages represent two periods of magmatisms, which can be correlated with the early and late stages of magmatisms associated with the Jinningian movement on the Yangtze Blocks. The results from this and previous studies indicate that the ages of the Precambrian detrital zircons from the Qilian Block are widely distributed in the Proterozoic era, distinct from the North China Block which was stable in the Neo-Mesoproterozoic era. By contrast, the age histograms of the detrital zircons from the Qilian Block is similar to those from Precambrian basement of the Yangtze Craton. Therefore, it is suggested that the Qilian Block had a strong affinity toward the Yangtze Craton and might belong to the supercontinent Gondwana in the Neoproterozoic time. This inference is supported by Nd model age (TDM), stratigraphic, and paleontological evidence. It is further considered that the Qilian Block was rifted from the supercontinent Gondwana during late Sinian to form an isolated continent in the Proto-Tethyan Ocean, moving towards the Alaxa Block in the North China Craton. The part of Proto-Tethyan Ocean between the Qilian and Alaxa Blocks should correspond to the so-called Paleo-Qilian Ocean. Following the closure of the Paleo-Qilian Ocean in the early Paleozoic, the Qilian Block collided with the Alaxa Block to form the North Qilian Orogenic Belt. Based on this tectonic explanation, the North Qilian ophiolites should represent parts of lithosphere from the Proto-Tethyan Ocean. Lithological and geochronological evidence also indicates that the Qilian Block underwent continental reactivation possibly induced by the deep northward subduction of the North Qaidam Block in early Paleozoic time.  相似文献   
139.
安徽巢北地区坐落着一个"M"型的山脉,近年来对该地区的构造、地层和古生物化石已有很多的研究积累,但对于岩浆岩,由于分布和发育有限而研究程度较低。文章应用LA-ICP-MS锆石微区分析技术对该地区出露的岩体进行了精确定年。结果显示,岩体中含大量岩浆成因锆石,以高的w(Th)/w(U)比和振荡结晶环带为特征。样品中16个测点的n(206Pb)/n(238 U)加权平均年龄为(100.8±1.3)Ma,代表该岩体的形成年龄。巢北地区位于下扬子北缘,近年来关于下扬子地区中生代岩浆岩研究的年龄数据尚无小于100 Ma的报道,而在本区西侧紧邻的郯庐断裂带南缘上,其岩浆岩的形成时代介于132~103 Ma之间。因此,巢北地区侵入岩在时代和成因上,和郯庐断裂带的联系更加密切。  相似文献   
140.
西昆仑赞坎铁矿区英安班岩锆石U-Pb年代学研究   总被引:1,自引:0,他引:1  
西昆仑赞坎英安斑岩的锆石LA-ICPMS年龄和LA-MC-ICPMS Hf同位素分析结果表明,两个样品均获得了较为一致的主体年龄,分别为533±10 Ma及527.4±9.0 Ma,都归为古生代,而不是前人所归为的前寒武纪布伦阔勒群.选用其中一个样品进行,锆石Hf同位素组成实验,其赞坎英安斑岩εHf(t)值为-3.31~-9.02,平均为-5.40,具有明显的不均一性,Hf平均地壳模式年龄为TDMC=1.70~2.06 Ga(去除其中两个U-Pb年龄异常高值),峰值在1.7~1.8 Ga左右,与锆石形成年龄533 Ma相差甚远,说明这类锆石的母岩中主体是再造的古老地壳,同时也可能混合幔源,对应着1.7~2.0 Ga地壳再造.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号