首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6057篇
  免费   330篇
  国内免费   107篇
系统科学   18篇
丛书文集   64篇
教育与普及   314篇
理论与方法论   1篇
现状及发展   15篇
综合类   6082篇
  2024年   26篇
  2023年   69篇
  2022年   90篇
  2021年   86篇
  2020年   78篇
  2019年   76篇
  2018年   90篇
  2017年   117篇
  2016年   127篇
  2015年   176篇
  2014年   188篇
  2013年   162篇
  2012年   323篇
  2011年   348篇
  2010年   258篇
  2009年   365篇
  2008年   398篇
  2007年   532篇
  2006年   497篇
  2005年   419篇
  2004年   375篇
  2003年   316篇
  2002年   259篇
  2001年   207篇
  2000年   144篇
  1999年   124篇
  1998年   105篇
  1997年   91篇
  1996年   73篇
  1995年   69篇
  1994年   61篇
  1993年   47篇
  1992年   43篇
  1991年   52篇
  1990年   34篇
  1989年   24篇
  1988年   21篇
  1987年   18篇
  1986年   5篇
  1985年   1篇
排序方式: 共有6494条查询结果,搜索用时 375 毫秒
181.
钢管混凝土拱极限承载力计算及相关参数分析   总被引:1,自引:0,他引:1  
采用考虑材料非线性的钢管混凝土拱极限承载力计算方法,对两个模型拱进行了极限承载力计算及相关参数分析.在该方法中,对钢管混凝土拱结构采用纤维单元模型,该模型假定钢管与混凝土完全粘接,钢管对核心混凝土的套箍作用体现在以一维形式表达的核心混凝土的应力-应变关系曲线之中.针对材料非线性分析中单元内各点刚度参差不齐的特点,采用单元内设小元的方法(相当于子结构),编制了非线性有限元程序.在该程序中,计算模型完全是基于小元层次进行的,比如:单元刚度矩阵由小元刚度矩阵凝聚而成,单元节点的残余力由小元节点的残余力构成,故只需改变单元内小元个数这一个参数,就可实现对结构的重新划分,极大地降低了非线性方程组的阶数,且方便实用.在程序计算结果得到模型试验结果验证的基础上,还分析了套箍系数、截面含筋率及混凝土强度对结构极限承载力的影响.  相似文献   
182.
以西安西咸新区沣河大桥单箱三室预应力混凝土箱梁桥为研究对象,进行断面温度分布测试,研究箱梁的温度分布规律,讨论了箱梁的温度分布模式和温度基数,提出了指数函数和线性函数相结合的温度梯度模式。结果表明:受环境温度影响,外表面的混凝土温度每天随环境温度急剧变化,内表面除上翼板内侧外其余位置温度比较恒定;从竖向温度分布看,一维热传播理论适用于上翼板和下翼板,但不适用于腹板,且下翼板内外表面温差显著;最大正温度梯度主要出现在夏季,而最大负温度梯度主要出现在冬季。  相似文献   
183.
对3根配置500 MPa箍筋的混凝土梁进行间接加载试验,分析了高强箍筋混凝土梁的受力性能、斜裂缝开展情况以及破坏形态.结合ABAQUS有限元软件研究了剪跨比和配箍率对试验梁抗剪承载力的影响.研究表明:《混凝土结构设计规范》能很好地预测配置500 MPa箍筋混凝土梁在直接加载作用下的抗剪承载力;间接加载梁与直接加载梁相比,抗剪承载力有一定程度的降低,降低因素主要为剪跨比和配箍率;规范中附加横向配筋的构造要求可以有效补偿间接加载作用下高强箍筋梁抗剪承载力的降低.  相似文献   
184.
以页岩陶粒混凝土为基础配方,系统研究了单掺和双掺不同含量的偏高岭土、粉煤灰、钢渣等矿物掺合料对其抗压强度影响,通过SEM和XRD进行了相关的微观结构和组成分析.结果表明当单掺矿物掺和料质量分数为10%时,页岩陶粒混凝土达到最高的抗压强度;双掺和时,总掺量为10%(质量分数)、比例为1∶2的偏高岭土和粉煤灰时,页岩陶粒混凝土的抗压强度最好,其3d、7d和28d的抗压强度分别达到了18.1、28.6和35MPa,对比没有加入矿物掺合料的页岩陶粒混凝土的抗压强度分别增加了417%、267%和250%,主要原因是偏高岭土和粉煤灰的掺加能够优化轻骨料混凝土的微观结构,对强度具有较大贡献.  相似文献   
185.
以国内某公司喷浆台车SPTC25为研究对象,首先利用陀螺仪和加速度传感器在施工现场进行动力学测试,采集到关于臂架在实际施工时的角速度和加速度的时间历程曲线。然后通过数据处理和分析计算,得到臂架在仰俯工况下的振动频率和振幅,分别为1.18 Hz和0.092 m,回转工况下的振动频率和振幅分别为0.98 Hz和0.073 m。其次,对湿喷台车臂架建立了准确的有限元模型,并且进行了模态仿真分析,得到前三阶模态的固有频率和振型。结合隧道施工时的实际操作数据统计,最终得出结论,臂架在施工过程中长时间处于共振状态,使得振幅过大,这是臂架疲劳开裂的主要原因,也为后续湿喷台车臂架的研发和优化提供了新的分析思路。  相似文献   
186.
针对头部加肋板弹体正侵彻/贯穿混凝土靶板的问题,进行受力分析并依此建立正侵彻理论模型.模型基于"开坑段+隧道段+剪切冲塞段"三阶段侵彻模型与空腔膨胀理论,对头部加肋板弹体与卵型头部弹体正侵彻/贯穿混凝土靶过程进行理论计算并做对比分析,且计算和对比分析了头部形状参数对头部加肋板弹体侵彻性能的影响.结果表明,带肋板型头部弹体贯穿剩余速度低,轴向过载大,侵彻能力比卵形头部弹体差,且增加肋板个数、宽度、小凸缘顶面圆直径或减少肋板高度均增加轴向过载,降低侵彻能力.  相似文献   
187.
为探明钢纤维对超高性能混凝土(UHPC)在高持久应力作用下的损伤与失效的影响,采用28天龄期的UHPC与普通混凝土试件开展了徐变损伤与失效试验。测试了各个试件加载全过程的轴向与环向应力应变,分析了其破坏模式、残余应变、徐变应变与名义泊松比。结合超声波无损检测与扫描电子显微镜手段,分析了UHPC内部微裂缝扩展与钢纤维与水泥基体的黏结损伤。结果表明:高持久应力的作用会导致UHPC与普通混凝土试件内部微裂缝扩展,引发构件横向膨胀,并最终导致构件破坏。UHPC中钢纤维的桥接约束效应可以很好地控制内部微裂缝扩展,从而限制了构件的横向膨胀。在持荷加载前,UHPC与普通混凝土具有类似的泊松比(0.18~0.19);在持荷破坏时,UHPC的最大泊松比为0.28,而普通混凝土的最大泊松比达到0.6。当持久应力水平超过0.70 fc时,徐变损伤开始出现,具体表现为循环加载的强度与弹性模量下降。随着持久应力水平的提升,钢纤维与水泥基体的黏结出现损伤,钢纤维无法约束试件内部微裂缝的扩展,从而进一步加剧了试件损伤,甚至导致了试件的破坏。  相似文献   
188.
为了研究不同暴露环境(大气区、潮差区和浪溅区)对氯离子在混凝土中传输的影响,以及氯离子扩散过程的时变特性,对北部湾某码头的混凝土现场耐久性进行了检测,得到了不同深度混凝土试样的自由氯离子浓度.结果表明,在同一侵蚀深度,浪溅区的氯离子浓度最大,潮差区的次之,大气区的最小,拟合得到的表面氯离子浓度和表观氯离子扩散系数亦表现出了相同特性;浪溅区是影响临海钢筋混凝土结构耐久性的最不利暴露环境;氯离子扩散系数随侵蚀时间递减,时间参数为服从正态分布的随机变量,大气区、潮差区和浪溅区时间参数的均值分别为0.19,0.36和0.43;在钢筋混凝土结构的耐久性分析中应考虑氯离子扩散系数的时变特性.  相似文献   
189.
为了提高废弃陶瓷在混凝土中的利用率,将废弃陶瓷破碎、筛分加工成人工细骨料,按不同比例(10%,20%,30%,40%及50%),且分别采用“C”替代法(即传统替代方式,要求陶瓷细骨料细度模数与天然河砂细度模数相近即可,等质量取代)、“P”替代法(陶瓷细骨料一对一平均替代对应的不同粒径的天然河砂)、“D”替代法(陶瓷细骨料一对一且仅替代粒径为1.18,2.36和4.75mm粒径相对较大的天然河砂)及“X”替代法(陶瓷细骨料一对一且仅替代粒径为0.15,0.3和0.6mm粒径相对较小的天然河砂)取代天然河砂,制备陶瓷细骨料混凝土.共设计21组混凝土,包括基准混凝土1组,“C”,“P”,“D”及“X”替代法各5组.水胶比均为0.49,进行混凝土28d的抗压强度试验.结果表明:在水胶比为0.49的条件下,陶瓷细骨料掺量不大于50%时,陶瓷细骨料混凝土抗压强度和基准混凝土为同一强度等级,均到达C30强度等级要求;不同的替代方式,对应的陶瓷细骨料最佳掺量不同;不同的陶瓷细骨料掺量,对应的最优替代方式不同.  相似文献   
190.
为提高废旧陶瓷的再生利用率,将陶瓷颗粒与陶瓷粉作为再生混凝土骨料与掺合料进行再生利用.运用正交设计的试验方法,以陶瓷粉、陶瓷颗粒、再生细骨料、粉煤灰、硅灰为5因素,每个因素设置4个水平,共设计16组配合比方案,进行抗压、导热等试验,得到陶瓷再生混凝土的强度、导热系数等物理力学参数,并寻找出最优配合比.试验结果表明最佳配合比为:陶瓷粉的质量分数为10%,陶瓷颗粒的质量分数为20%,再生细骨料的质量分数为40%,粉煤灰的质量分数为15%,硅灰的质量分数为5%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号