首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6030篇
  免费   176篇
  国内免费   457篇
系统科学   380篇
丛书文集   210篇
教育与普及   31篇
理论与方法论   10篇
现状及发展   62篇
综合类   5969篇
自然研究   1篇
  2024年   16篇
  2023年   37篇
  2022年   57篇
  2021年   76篇
  2020年   78篇
  2019年   62篇
  2018年   72篇
  2017年   97篇
  2016年   112篇
  2015年   125篇
  2014年   209篇
  2013年   173篇
  2012年   266篇
  2011年   277篇
  2010年   212篇
  2009年   295篇
  2008年   294篇
  2007年   434篇
  2006年   362篇
  2005年   369篇
  2004年   325篇
  2003年   277篇
  2002年   319篇
  2001年   268篇
  2000年   245篇
  1999年   238篇
  1998年   148篇
  1997年   174篇
  1996年   167篇
  1995年   143篇
  1994年   122篇
  1993年   127篇
  1992年   97篇
  1991年   83篇
  1990年   87篇
  1989年   88篇
  1988年   76篇
  1987年   38篇
  1986年   11篇
  1985年   4篇
  1984年   2篇
  1955年   1篇
排序方式: 共有6663条查询结果,搜索用时 15 毫秒
991.
为了减少小波神经网络(Wavelet Neural Network,WNN)的母小波与神经元数,在WNN模型修正的基础上提出了一种能够储存小波上一步信息由自反馈神经元组成的自回归小波神经网络(Self Recurrent Wavelet Neural Network,SRWNN);在分析了这种网络的结构形式后,提出了一类非线性系统的神经网络自适应状态观测器设计方法,并通过引入Lyapunov函数,证明了这种观测器设计方法的正确性;最后,将这种观测器设计方法用于航天器机械手的反演控制,根据SRWNN观测器的估计状态值,应用反演控制理论设计控制器,能够很好地实现系统状态观测,实现无需速度的信号跟踪。  相似文献   
992.
采用密度泛函理论的B3LYP方法,微扰理论的MP2方法及自洽反应场(SCRF)理论的SMD模型方法,研究气相S-异亮氨酸向R-别异亮氨酸的旋光异构机理及水溶剂化效应.结果表明:该反应有a,b,c 3个通道,在通道a和c实现旋光异构反应需经过3个基元反应,在通道b实现旋光异构反应需经过4个基元反应;a为主反应通道,决速步骤Gibbs自由能垒为255.0kJ/mol,由质子从α手性C向氨基N迁移的过渡态产生,决速步骤的反应速率常数为1.25×10-32 s~(-1);水溶剂效应使决速步骤能垒降至114.1kJ/mol,反应速率常数增至2.73×10-7 s~(-1),即水环境对S-异亮氨酸旋光异构具有较好的催化作用.  相似文献   
993.
采用密度泛函理论的B3LYP方法和微扰理论的MP2方法,研究两种最稳定构型的蛋氨酸分子(Met)基于氨基作为质子迁移桥梁的旋光异构反应.结果表明:基于氨基作为质子迁移桥梁的蛋氨酸分子旋光异构反应有2条通道a和b;构型1的主反应通道为通道a,决速步骤为第1基元反应,自由能垒为264.2kJ/mol,由质子从手性C直接向氨基N迁移的过渡态产生;构型2的主反应通道也为通道a,决速步骤为第2基元反应,自由能垒为266.1kJ/mol,由羧基异构后质子从手性C向氨基N迁移的过渡态产生;两种构型的Met分子旋光异构速控步骤的反应速率常数分别为3.04×10~(-34),1.41×10~(-34) s~(-1).  相似文献   
994.
基于密度泛函理论B3LYP,在6-311+G(2df)基组水平上研究双水复合条件下的天冬酰胺分子手性转变过程.寻找天冬酰胺分子手性反应过程中各过渡态与中间体的极值点结构,绘制双水复合条件下完整的天冬酰胺分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:双水复合条件下S型天冬酰胺分子手性C原子上的H原子以羧基上的O原子为桥梁,转移至手性C原子的另一侧,实现从S型到R型天冬酰胺分子的手性转变;双水复合条件下该路径有4个中间体和5个过渡态,最大的反应能垒为317.948 1kJ/mol,来源于第4个过渡态TS2-R-Asn2H2O-1.  相似文献   
995.
基于密度泛函与含时密度泛函理论方法,研究1-羟基-2-萘甲醛(HN12)分子及分子异构体在基态和激发态的氢键动力学过程.结果表明:在基态的HN12分子被激发至第一电子激发态后,出现氢键键长变短及氢键中羟基的红外光谱红移现象;激发态分子内的质子可发生转移反应;异构体在激发态时不易发生逆向的质子转移反应,但在基态较易出现逆向的质子转移过程.即HN12分子及分子异构体在基态和激发态存在一个循环机制.  相似文献   
996.
配电开关动作产生的振动信号具有非线性非平稳特性,蕴含机械状态信息.提出一种基于振动信号二维特征向量和模糊K均值聚类的配电开关机械状态识别新方法.利用HHT带通滤波对配电开关振动信号进行时频分解,分别求取各子频带信号的能量值和重心频率,得到振动信号的二维特征向量作为反映配电开关的机械状态的特征量.提取配电开关在正常、底座螺丝松动、机械结构卡涩及卸掉A相触头绝缘拉杆等4种典型状态实测振动信号的二维特征向量做模糊K均值聚类,结果表明,所提取的特征向量能有效地表征配电开关的机械状态.  相似文献   
997.
针对我国中小城市数据现状,提出了一种基于路中定点线圈低频(1/60Hz)检测数据的交叉口交通状态估计方法.该方法基于仿真数据,分析了不同环境变量组合条件下占有率、流量和交通状态的关系,并提出了基于线性拟合的交通状态分界线建立方法;又利用多元线性回归拟合出分界曲线各系数与环境变量的函数关系,用其估计一般条件下的交通状态.经过验证,本方法仿真环境和实证环境下的平均估计准确率分别达到80%和75%以上,且严重错误率均低于2.1%.  相似文献   
998.
采用密度泛函理论的B3LYP方法和微扰理论的MP2方法,对苯丙氨酸分子的3种最稳定构型基于氨基做质子迁移桥梁的旋光异构进行研究.反应通道研究发现:标题反应有3条通道a、b和c.对于构型1和3,a是羧基异构后手性碳上的质子再以氨基为桥迁移,b是手性碳上的质子直接以氨基为桥迁移,c是手性碳上的质子以羧基和氨基联合为桥迁移.对于构型2,3条通道分别是质子只以氨基、顺次以羰基与氨基和顺次以羧基和氨基为桥迁移;势能面计算表明:构型1,3的主反应通道都是a,决速步是第2基元反应,活化吉布斯自由能垒分别为256.7kJ·mol~(-1)和263.4kJ·mol~(-1),由羧基异构后质子从手性碳向氨基氮迁移的过渡态产生.构型2的主反应通道也是a,决速步是第1基元反应,活化吉布斯自由能垒为256.5kJ·mol~(-1),由质子从手性碳向氨基氮迁移的过渡态产生;3种构型的苯丙氨酸分子旋光异构速控步骤的反应速率常数分别为6.27×10-33 s~(-1),6.79×10-33s~(-1)和4.20×10-34s~(-1).  相似文献   
999.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了标题反应.势能面计算表明:标题反应的决速步骤均为第2基元反应,决速步能垒来自于质子从手性碳向氨基氮转移的过渡态.甲醇溶剂环境下构象1和2手性转变决速步的吉布斯自由能垒分别为109.8 kJ·mol~(-1)和111.0 kJ·mol~(-1),比气相甲醇环境下的决速步能垒134.2 kJ·mol~(-1)和130.8 kJ·mol~(-1)均有明显降低,比水环境下的决速步能垒122.5 kJ·mol~(-1)也明显降低,比裸环境下的决速步能垒266.1 kJ·mol~(-1)大幅降低,比限域在SWBNNT(5,5)内的决速步能垒为201.1 kJ·mol~(-1)也显著降低.结果表明:甲醇分子簇对α-丙氨酸分子的手性转变具有明显的催化作用,甲醇溶剂效应对质子从手性碳向氨基氮的转移反应具有较好的助催化作用.  相似文献   
1000.
基于ANSYS/LS-DYNA软件,分析隧道开挖过程中爆破振动对围岩及初期支护的影响.为了使数值模拟能够真正反映实际情况,采用更精确合理的爆炸数值计算方法:利用软件内置炸药模块和状态方程模拟爆破荷载的作用,并采用ALE算法模拟炸药与岩石之间的接触关系.在ALE算法中,为防止爆炸过程中网格的过分畸变给结果带来不利影响,将炸药定义成流体.分析结果表明:应力、速度均在爆炸发生的极短时间内达到峰值,而后迅速衰减,10ms后达到稳定状态.上台阶爆破在围岩拱顶处产生的水平振速峰值为下台阶爆破的6倍左右,在拱脚位置约为0.88倍;上台阶爆破在围岩拱顶处产生的竖直振速峰值为下台阶爆破的8倍左右.下台阶爆破在围岩拱顶处产生的应力峰值是上台阶爆破的1/5,在拱脚处相差不大;同一位置,初期支护结构质点振速峰值与单元应力峰值均比围岩大.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号