首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   897篇
  免费   112篇
  国内免费   133篇
系统科学   1篇
丛书文集   16篇
教育与普及   1篇
理论与方法论   2篇
现状及发展   7篇
综合类   1115篇
  2024年   2篇
  2023年   6篇
  2022年   24篇
  2021年   15篇
  2020年   17篇
  2019年   15篇
  2018年   18篇
  2017年   38篇
  2016年   51篇
  2015年   59篇
  2014年   54篇
  2013年   29篇
  2012年   57篇
  2011年   57篇
  2010年   24篇
  2009年   42篇
  2008年   27篇
  2007年   39篇
  2006年   44篇
  2005年   35篇
  2004年   32篇
  2003年   39篇
  2002年   35篇
  2001年   26篇
  2000年   20篇
  1999年   24篇
  1998年   21篇
  1997年   26篇
  1996年   35篇
  1995年   38篇
  1994年   23篇
  1993年   19篇
  1992年   27篇
  1991年   24篇
  1990年   27篇
  1989年   16篇
  1988年   24篇
  1987年   20篇
  1986年   9篇
  1985年   3篇
  1984年   1篇
排序方式: 共有1142条查询结果,搜索用时 15 毫秒
401.
The reactive wetting kinetics of a Sn-30Bi-0.5Cu Pb-free solder alloy on a Cu substrate was investigated by the sessile drop method from 493 to 623 K.The triple line frontier,characterized by the drop base radius R was recorded dynamically with a high resolution CCD using different spreading processes in an Ar-H 2 flow.We found a good agreement with the De Gennes model for the relationship between ln(dR/dt) and lnR for the spreading processes at 493 and 523 K.However,a significant deviation from the De Gennes model was found for the spreading processes at 548 and 623 K.Our experimental results show a complicated temperature effect on the spreading kinetics.Intermetallics at the Sn-30Bi-0.5Cu/Cu interface were identified as Cu 6 Sn 5 adjacent to the solder and Cu 3 Sn adjacent to the Cu substrate.The intermetallic compounds effectively enhanced the triple line mobility because of reaction product formation at the diffusion frontier.  相似文献   
402.
This study focuses on a quantitative analysis of dislocation accumulation after cold plastic deformation and mechanical properties of FeNiCoCrMn and TiNbHfTaZr high entropy alloys (HEAs) which are single phase fcc and bcc solid solutions, respectively. In order to study the role of compositional complexity from unary to quinary compositions on dislocation accumulation and mechanical properties after plastic deformation, the single solid solution phase forming sub-alloys of the two HEAs were investigated. All studied samples revealed a large plastic deformability under cold-rotary swaging process by 85–90% area reduction without intermediate annealing. The dislocation density of all studied samples, determined by Williamson-Hall method on synchrotron X-ray diffraction patterns, were between 1014 - 1015 m−2 dependent on the alloy composition. The level of dislocation density after plastic deformation is not only affected by the number of constituent element but the lattice distortion and intrinsic properties in terms of stacking fault energy, modulus misfit, and melting point also impact the dislocation storage. The level of dislocation density determines the level of mechanical properties because of a resistance to dislocation motions. The hardness and yield compressive strength of the studied samples are proportional to the level of dislocation density.  相似文献   
403.
采用电化学阻抗测试技术(EIS)、Mott-Schottky方法对β相模型合金在Cl-溶液环境中形成的表面膜的稳定性和半导体特性进行研究.结果表明,Cl-浓度的增加,使β相表面膜形成和活化溶解的趋势均加剧,即表面膜的稳定性变差.原因在于Cl-浓度较低时,β相表面膜的半导体类型为P型,P型半导体膜是一种阳离子导体膜,Cl-很难通过迁移扩散的方式穿过表面膜.随着Cl-浓度的增大,β相表面膜的半导体类型转变为N型,N型半导体膜便于Cl-穿越膜层到达膜层底部,继续腐蚀金属并使表面膜发生破裂.  相似文献   
404.
Mn对喷射沉积Al-25Si-xFe-yMn合金中Fe相的影响   总被引:1,自引:1,他引:0  
通过喷射沉积工艺制备了Al-25Si-xFe-yMn(Mn/Fe质量比在0~1之间)系列合金的沉积坯,利用SEM、XRD和EDX对这些沉积坯的微观组织进行分析.结果表明,添加Mn元素,将生成颗粒状的α-Al15(Fe,Mn)3Si2,取代了针状的δ-Al4FeSi2和β-Al5FeSi相,从而显著地改善高硅铝合金中的Fe相的形貌,并且随着Mn/Fe质量比的提高,沉积坯中颗粒状的α-Al15(Fe,Mn)3Si2含量也增加,而针状相的含量却减少,当Mn/Fe质量比增加到0.83或1时,在沉积坯中只发现颗粒状的α-Al15(Fe,Mn)3Si2.  相似文献   
405.
基于密度泛函理论的第一性原理计算,研究了闪锌矿MgxZn1-xSe合金的稳定性、电子结构和光学性质.研究结果表明,闪锌矿ZnSe和MgxZn1-xSe合金都为直接带隙半导体,MgxZn1-xSe合金的带隙宽度Eg和形成能Eb分别可以由Eg=1.30+1.34x和Eb=-1.48+0.60x-0.27x2进行估计.同时,MgxZn1-xSe合金的价带顶主要取决于Se 4p 和 Zn 3p态电子的相互作用,而其导带底则主要由Zn 4s、Zn 3p 以及Se 4s态电子共同决定.此外,随着镁掺杂系数x的逐渐增大,MgxZn1-xSe合金的静态介电常数逐渐减小,而其吸收谱则出现明显的蓝移现象.研究结果为MgxZn1-xSe合金在光电探测器方面的应用提供了重要的理论指导.  相似文献   
406.
The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatter diffraction analysis of misorientation angle distribution, cumulative misorientation and geometrically necessary dislocation (GND) density. Experimental results indicate that coarse spindle-shaped grains with the dimension of 200 μm×80 μm separate into fine equiaxed grains of 20 μm in size as a result of newborn low-angle grain boundaries formed during the aging process. More specifically, the dislocation arrays, which are rearranged and formed due to scattered dislocations during earlier quenching, transform into low-angle grain boundaries with aging time. The relative frequency of 3°-5° low-angle grain boundaries increases to over 30%. The GND density, which describes low-angle grain boundaries with the misorientation angle under 3°, tends to decrease during initial aging. The inhomogeneous distribution of GNDs is affected by grain orientation. A decrease in GND density mainly occurs from 1.83×1013 to 4.40×1011 m-2 in grains with 〈111〉 fiber texture. This is consistent with a decrease of unit cumulative misorientation. Precipitation on grain boundaries and the formation of a precipitation free zone (PFZ) are facilitated due to the eroding activity of the Graff etchant. Consequently, low-angle grain boundaries could be readily viewed by optical microscopy due to an increase in their electric potential difference.  相似文献   
407.
The corrosion and oxygen evolution behaviors of cast and rolled Pb–Ag–Nd anodes were investigated by metalloscopy, environmental scanning electron microscopy, X-ray diffraction analysis, and various electrochemical measurements. The rolled anode exhibits fewer interdendritic boundaries and a dispersed distribution of Pb–Ag eutectic mixtures and Nd-rich phases in its cross-section. This feature inhibits rapid interdendritic corrosion into the metallic substrate along the interdendritic boundary network. In addition, the anodic layer formed on the rolled anode is more stable toward the electrolyte than that formed on the cast anode, reducing the corrosion of the metallic substrate during current interruption. Hence, the rolled anode has a higher corrosion resistance than the cast anode. However, the rolled anode exhibits a slightly higher anodic potential than the cast anode after 72 h of galvanostatic polarization, consistent with the larger charge transfer resistance. This larger charge transfer resistance may result from the oxygen-evolution reactive sites being blocked by the adsorption of more intermediates and oxygen species at the anodic layer/electrolyte interfaces of the rolled anode than at the interfaces of cast anode.  相似文献   
408.
The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of Al-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testing was performed in various Zn and Mg contents under different annealing and cold-rolling conditions. In the results, the stress drop and reloading time of serrations increase with increasing plastic strain and exhibit a common linear relationship. The increase rates of stress drop and reloading time increase with increasing Mg or Zn content. The alloys with a greater intensity of serrated yielding generally exhibit a greater elongation. The stress drop and reloading time of serrations decrease with increasing grain size in the case of the annealed samples. The cold-rolled sample exhibits the most severe serration because it initially contains a large number of grain boundaries and dislocations.  相似文献   
409.
An FeMo-alloy-doped β-SiAlON (FeMo/β-SiAlON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, AlN, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical properties of the composite were investigated. Some properties of the composite, including its bending strength at 700℃ and after oxidization at 700℃ for 24 h in air, thermal shock resistance and corrosion resistance to molten aluminum, were also evaluated. The results show that the density, toughness, bending strength, and thermal shock resistance of the composite are obviously improved with the addition of an FeMo alloy. In addition, other properties of the composite such as its high-temperature strength and oxidized strength are also improved by the addition of FeMo alloy, and its corrosion resistance to molten aluminum is maintained. These findings indicate that the developed FeMo/β-SiAlON composite exhibits strong potential for application to molten aluminum environments.  相似文献   
410.
An aluminum alloy (Al-Zn-Mg-Cu) subjected to deep cryogenic treatment (DCT) was systematically investigated. The results show that a DCT-induced phase transformation varies the microstructures and affects the mechanical properties of the Al alloy. Both Guinier-Preston (GP) zones and a metastable η' phase were observed by high-resolution transmission electron microscopy. The phenomenon of the second precipitation of the GP zones in samples subjected to DCT after being aged was observed. The viability of this phase transformation was also demonstrated by first-principles calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号