全文获取类型
收费全文 | 2853篇 |
免费 | 161篇 |
国内免费 | 234篇 |
专业分类
系统科学 | 267篇 |
丛书文集 | 67篇 |
教育与普及 | 26篇 |
理论与方法论 | 3篇 |
现状及发展 | 456篇 |
综合类 | 2429篇 |
出版年
2024年 | 20篇 |
2023年 | 24篇 |
2022年 | 47篇 |
2021年 | 51篇 |
2020年 | 77篇 |
2019年 | 56篇 |
2018年 | 53篇 |
2017年 | 63篇 |
2016年 | 68篇 |
2015年 | 96篇 |
2014年 | 154篇 |
2013年 | 115篇 |
2012年 | 179篇 |
2011年 | 171篇 |
2010年 | 160篇 |
2009年 | 148篇 |
2008年 | 175篇 |
2007年 | 199篇 |
2006年 | 172篇 |
2005年 | 160篇 |
2004年 | 168篇 |
2003年 | 146篇 |
2002年 | 99篇 |
2001年 | 72篇 |
2000年 | 67篇 |
1999年 | 66篇 |
1998年 | 61篇 |
1997年 | 62篇 |
1996年 | 42篇 |
1995年 | 41篇 |
1994年 | 29篇 |
1993年 | 27篇 |
1992年 | 36篇 |
1991年 | 24篇 |
1990年 | 35篇 |
1989年 | 28篇 |
1988年 | 13篇 |
1987年 | 15篇 |
1986年 | 6篇 |
1985年 | 3篇 |
1984年 | 7篇 |
1983年 | 7篇 |
1982年 | 4篇 |
1981年 | 2篇 |
排序方式: 共有3248条查询结果,搜索用时 0 毫秒
41.
灰色Verhulst预测模型的病态特性 总被引:1,自引:0,他引:1
为揭示灰色Verhulst模型的建模精度在原始序列存在微小扰动下的变化规律,采用矩阵谱条件数作为研究工具对该模型系数矩阵谱条件数的取值进行分类讨论. 研究结果表明,当且仅当系统原始数据序列第一项为大于零的常数,其他所有项数据皆为0时,建立灰色Verhulst模型才会呈现严重病态性,而采用已呈现特定规律的数据序列构建灰色Verhulst预测模型毫无实际意义. 研究结论认为,灰色Verhulst模型并不存在严重病态性. 相似文献
42.
The paper deals with unobserved components in ARIMA models with GARCH errors, in the context of an actual application, namely seasonal adjustment of the monthly Spanish money supply series. The series shows clear evidence of (moderate) non-linearity, which does not disappear with simple outlier correction. The GARCH structure explains reasonably well the non-linearity, and this explanation is robust with respect to the GARCH specification. We look at the time variation of the standard error of the adjusted series estimator and show how it can be measured. Next, we look at the implications this variation has on short-term monetary control. The non-linearity seems to have a small effect in practice. It is further seen that the conditional variance of the GARCH process may, in turn, be decomposed into components. In fact, the conditional variance of the money supply series is the sum of a weak linear trend, a strong non-linear seasonal component, and a moderate non-linear irregular component. This information has policy implications: for example, there are periods in the year when policy can be more assertive because information is more precise. Finally, looking at the non-linear components of the money supply it is seen how linear combinations of non-linear series can produce series that behave linearly. 相似文献
43.
Neural networks (NNs) are appropriate to use in time series analysis under conditions of unfulfilled assumptions, i.e., non‐normality and nonlinearity. The aim of this paper is to propose means of addressing identified shortcomings with the objective of identifying the NN structure for inflation forecasting. The research is based on a theoretical model that includes the characteristics of demand‐pull and cost‐push inflation; i.e., it uses the labor market, financial and external factors, and lagged inflation variables. It is conducted at the aggregate level of euro area countries from January 1999 to January 2017. Based on the estimated 90 feedforward NNs (FNNs) and 450 Jordan NNs (JNNs), which differ in variable parameters (number of iterations, learning rate, initial weight value intervals, number of hidden neurons, and weight value of the context unit), the mean square error (MSE), and the Akaike Information Criterion (AIC) are calculated for two periods: in‐the‐sample and out‐of‐sample. Ranking NNs simultaneously on both periods according to either MSE or AIC does not lead to the selection of the ‘best’ NN because the optimal NN in‐the‐sample, based on MSE and/or AIC criteria, often has high out‐of‐sample values of both indicators. To achieve the best compromise solution, i.e., to select an optimal NN, the preference ranking organization method for enrichment of evaluations (PROMETHEE) is used. Comparing the optimal FNN and JNN, i.e., FNN(4,5,1) and JNN(4,3,1), it is concluded that under approximately equal conditions, fewer hidden layer neurons are required in JNN than in FNN, confirming that JNN is parsimonious compared to FNN. Moreover, JNN has a better forecasting performance than FNN. 相似文献
44.
In this paper, we assess the predictive content of latent economic policy uncertainty and data surprise factors for forecasting and nowcasting gross domestic product (GDP) using factor-type econometric models. Our analysis focuses on five emerging market economies: Brazil, Indonesia, Mexico, South Africa, and Turkey; and we carry out a forecasting horse race in which predictions from various different models are compared. These models may (or may not) contain latent uncertainty and surprise factors constructed using both local and global economic datasets. The set of models that we examine in our experiments includes both simple benchmark linear econometric models as well as dynamic factor models that are estimated using a variety of frequentist and Bayesian data shrinkage methods based on the least absolute shrinkage operator (LASSO). We find that the inclusion of our new uncertainty and surprise factors leads to superior predictions of GDP growth, particularly when these latent factors are constructed using Bayesian variants of the LASSO. Overall, our findings point to the importance of spillover effects from global uncertainty and data surprises, when predicting GDP growth in emerging market economies. 相似文献
45.
In a conditional predictive ability test framework, we investigate whether market factors influence the relative conditional predictive ability of realized measures (RMs) and implied volatility (IV), which is able to examine the asynchronism in their forecasting accuracy, and further analyze their unconditional forecasting performance for volatility forecast. Our results show that the asynchronism can be detected significantly and is strongly related to certain market factors, and the comparison between RMs and IV on average forecast performance is more efficient than previous studies. Finally, we use the factors to extend the empirical similarity (ES) approach for combination of forecasts derived from RMs and IV. 相似文献
46.
This paper introduces a novel generalized autoregressive conditional heteroskedasticity–mixed data sampling–extreme shocks (GARCH-MIDAS-ES) model for stock volatility to examine whether the importance of extreme shocks changes in different time ranges. Based on different combinations of the short- and long-term effects caused by extreme events, we extend the standard GARCH-MIDAS model to characterize the different responses of the stock market for short- and long-term horizons, separately or in combination. The unique timespan of nearly 100 years of the Dow Jones Industrial Average (DJIA) daily returns allows us to understand the stock market volatility under extreme shocks from a historical perspective. The in-sample empirical results clearly show that the DJIA stock volatility is best fitted to the GARCH-MIDAS-SLES model by including the short- and long-term impacts of extreme shocks for all forecasting horizons. The out-of-sample results and robustness tests emphasize the significance of decomposing the effect of extreme shocks into short- and long-term effects to improve the accuracy of the DJIA volatility forecasts. 相似文献
47.
This paper presents an analysis of shift-contagion in energy markets, testing whether linkages between returns in energy markets increase during crisis periods. The research presented herein demonstrates how common movement between energy markets increases due to (i) shift-contagion across energy markets, reflected by structural transmission of shocks across markets and (ii) larger common shocks operating through standard cross-market interdependences. A regime-switching model was developed to detect shift-contagion across energy markets. In the approach adopted herein, the occurrence of shift-contagion is endogenously estimated rather than being exogenously assigned. The results show that shift-contagion has been a major feature of energy markets over the last decade. Evidence is presented which demonstrates that the linkages between energy markets do not appear to be stable. These results are remarkably accurate for forecasting Brent and natural gas for horizons for up to 50 days. Conversely, for WTI (West Texas Intermediate oil) and coal, the model performs well only for forecasting very short horizons (up to 20 days). For all products, the model shows significant biases for long horizons. 相似文献
48.
We consider finite state-space non-homogeneous hidden Markov models for forecasting univariate time series. Given a set of predictors, the time series are modeled via predictive regressions with state-dependent coefficients and time-varying transition probabilities that depend on the predictors via a logistic/multinomial function. In a hidden Markov setting, inference for logistic regression coefficients becomes complicated and in some cases impossible due to convergence issues. In this paper, we aim to address this problem utilizing the recently proposed Pólya-Gamma latent variable scheme. Also, we allow for model uncertainty regarding the predictors that affect the series both linearly — in the mean — and non-linearly — in the transition matrix. Predictor selection and inference on the model parameters are based on an automatic Markov chain Monte Carlo scheme with reversible jump steps. Hence the proposed methodology can be used as a black box for predicting time series. Using simulation experiments, we illustrate the performance of our algorithm in various setups, in terms of mixing properties, model selection and predictive ability. An empirical study on realized volatility data shows that our methodology gives improved forecasts compared to benchmark models. 相似文献
49.
We investigate the accuracy of capital investment predictors from a national business survey of South African manufacturing. Based on data available to correspondents at the time of survey completion, we propose variables that might inform the confidence that can be attached to their predictions. Having calibrated the survey predictors' directional accuracy, we model the probability of a correct directional prediction using logistic regression with the proposed variables. For point forecasting, we compare the accuracy of rescaled survey forecasts with time series benchmarks and some survey/time series hybrid models. In addition, using the same set of variables, we model the magnitude of survey prediction errors. Directional forecast tests showed that three out of four survey predictors have value but are biased and inefficient. For shorter horizons we found that survey forecasts, enhanced by time series data, significantly improved point forecasting accuracy. For longer horizons the survey predictors were at least as accurate as alternatives. The usefulness of the more accurate of the predictors examined is enhanced by auxiliary information, namely the probability of directional accuracy and the estimated error magnitude. 相似文献
50.
Daumantas Bloznelis 《Journal of forecasting》2018,37(2):151-169
This study establishes a benchmark for short‐term salmon price forecasting. The weekly spot price of Norwegian farmed Atlantic salmon is predicted 1–5 weeks ahead using data from 2007 to 2014. Sixteen alternative forecasting methods are considered, ranging from classical time series models to customized machine learning techniques to salmon futures prices. The best predictions are delivered by k‐nearest neighbors method for 1 week ahead; vector error correction model estimated using elastic net regularization for 2 and 3 weeks ahead; and futures prices for 4 and 5 weeks ahead. While the nominal gains in forecast accuracy over a naïve benchmark are small, the economic value of the forecasts is considerable. Using a simple trading strategy for timing the sales based on price forecasts could increase the net profit of a salmon farmer by around 7%. 相似文献