首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3355篇
  免费   345篇
  国内免费   218篇
系统科学   282篇
丛书文集   146篇
教育与普及   8篇
理论与方法论   11篇
现状及发展   190篇
综合类   3281篇
  2025年   19篇
  2024年   32篇
  2023年   35篇
  2022年   43篇
  2021年   41篇
  2020年   54篇
  2019年   52篇
  2018年   34篇
  2017年   35篇
  2016年   48篇
  2015年   76篇
  2014年   129篇
  2013年   112篇
  2012年   153篇
  2011年   201篇
  2010年   174篇
  2009年   182篇
  2008年   179篇
  2007年   243篇
  2006年   200篇
  2005年   208篇
  2004年   201篇
  2003年   163篇
  2002年   149篇
  2001年   140篇
  2000年   119篇
  1999年   121篇
  1998年   80篇
  1997年   97篇
  1996年   90篇
  1995年   73篇
  1994年   73篇
  1993年   63篇
  1992年   60篇
  1991年   42篇
  1990年   53篇
  1989年   49篇
  1988年   36篇
  1987年   25篇
  1986年   13篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   6篇
  1981年   2篇
排序方式: 共有3918条查询结果,搜索用时 0 毫秒
991.
    
Upon the evidence that infinite‐order vector autoregression setting is more realistic in time series models, we propose new model selection procedures for producing efficient multistep forecasts. They consist of order selection criteria involving the sample analog of the asymptotic approximation of the h‐step‐ahead forecast mean squared error matrix, where h is the forecast horizon. These criteria are minimized over a truncation order nT under the assumption that an infinite‐order vector autoregression can be approximated, under suitable conditions, with a sequence of truncated models, where nT is increasing with sample size. Using finite‐order vector autoregressive models with various persistent levels and realistic sample sizes, Monte Carlo simulations show that, overall, our criteria outperform conventional competitors. Specifically, they tend to yield better small‐sample distribution of the lag‐order estimates around the true value, while estimating it with relatively satisfactory probabilities. They also produce more efficient multistep (and even stepwise) forecasts since they yield the lowest h‐step‐ahead forecast mean squared errors for the individual components of the holding pseudo‐data to forecast. Thus estimating the actual autoregressive order as well as the best forecasting model can be achieved with the same selection procedure. Such results stand in sharp contrast to the belief that parsimony is a virtue in itself, and state that the relative accuracy of strongly consistent criteria such as the Schwarz information criterion, as claimed in the literature, is overstated. Our criteria are new tools extending those previously existing in the literature and hence can suitably be used for various practical situations when necessary. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
992.
    
We explore the benefits of forecast combinations based on forecast‐encompassing tests compared to simple averages and to Bates–Granger combinations. We also consider a new combination algorithm that fuses test‐based and Bates–Granger weighting. For a realistic simulation design, we generate multivariate time series samples from a macroeconomic DSGE‐VAR (dynamic stochastic general equilibrium–vector autoregressive) model. Results generally support Bates–Granger over uniform weighting, whereas benefits of test‐based weights depend on the sample size and on the prediction horizon. In a corresponding application to real‐world data, simple averaging performs best. Uniform averages may be the weighting scheme that is most robust to empirically observed irregularities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
993.
    
This paper combines and generalizes a number of recent time series models of daily exchange rate series by using a SETAR model which also allows the variance equation of a GARCH specification for the error terms to be drawn from more than one regime. An application of the model to the French Franc/Deutschmark exchange rate demonstrates that out‐of‐sample forecasts for the exchange rate volatility are also improved when the restriction that the data it is drawn from a single regime is removed. This result highlights the importance of considering both types of regime shift (i.e. thresholds in variance as well as in mean) when analysing financial time series. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
994.
    
Forecasting for nonlinear time series is an important topic in time series analysis. Existing numerical algorithms for multi‐step‐ahead forecasting ignore accuracy checking, alternative Monte Carlo methods are also computationally very demanding and their accuracy is difficult to control too. In this paper a numerical forecasting procedure for nonlinear autoregressive time series models is proposed. The forecasting procedure can be used to obtain approximate m‐step‐ahead predictive probability density functions, predictive distribution functions, predictive mean and variance, etc. for a range of nonlinear autoregressive time series models. Examples in the paper show that the forecasting procedure works very well both in terms of the accuracy of the results and in the ability to deal with different nonlinear autoregressive time series models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
995.
    
This paper examines small sample properties of alternative bias‐corrected bootstrap prediction regions for the vector autoregressive (VAR) model. Bias‐corrected bootstrap prediction regions are constructed by combining bias‐correction of VAR parameter estimators with the bootstrap procedure. The backward VAR model is used to bootstrap VAR forecasts conditionally on past observations. Bootstrap prediction regions based on asymptotic bias‐correction are compared with those based on bootstrap bias‐correction. Monte Carlo simulation results indicate that bootstrap prediction regions based on asymptotic bias‐correction show better small sample properties than those based on bootstrap bias‐correction for nearly all cases considered. The former provide accurate coverage properties in most cases, while the latter over‐estimate the future uncertainty. Overall, the percentile‐t bootstrap prediction region based on asymptotic bias‐correction is found to provide highly desirable small sample properties, outperforming its alternatives in nearly all cases. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
996.
    
We propose a nonlinear time series model where both the conditional mean and the conditional variance are asymmetric functions of past information. The model is particularly useful for analysing financial time series where it has been noted that there is an asymmetric impact of good news and bad news on volatility (risk) transmission. We introduce a coherent framework for testing asymmetries in the conditional mean and the conditional variance, separately or jointly. To this end we derive both a Wald and a Lagrange multiplier test. Some of the new asymmetric model's moment properties are investigated. Detailed empirical results are given for the daily returns of the composite index of the New York Stock Exchange. There is strong evidence of asymmetry in both the conditional mean and the conditional variance functions. In a genuine out‐of‐sample forecasting experiment the performance of the best fitted asymmetric model, having asymmetries in both conditional mean and conditional variance, is compared with an asymmetric model for the conditional mean, and with no‐change forecasts. This is done both in terms of conditional mean forecasting as well as in terms of risk forecasting. Finally, the paper presents some evidence of asymmetries in the index stock returns of the Group of Seven (G7) industrialized countries. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
997.
    
In this paper we present an extensive study of annual GNP data for five European countries. We look for intercountry dependence and analyse how the different economies interact, using several univariate ARIMA and unobserved components models and a multivariate model for the GNP incorporating all the common information among the variables. We use a dynamic factor model to take account of the common dynamic structure of the variables. This common dynamic structure can be non‐stationary (i.e. common trends) or stationary (i.e. common cycles). Comparisons of the models are made in terms of the root mean square error (RMSE) for one‐step‐ahead forecasts. For this particular group of European countries, the factor model outperforms the remaining ones. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
998.
    
Macroeconomic model builders attempting to construct forecasting models frequently face constraints of data scarcity in terms of short time series of data, and also of parameter non‐constancy and underspecification. Hence, a realistic alternative is often to guess rather than to estimate parameters of such models. This paper concentrates on repetitive guessing (drawing) parameters from iteratively changing distributions, with the straightforward objective function being that of minimization of squares of ex‐post prediction errors, weighted by penalty weights and subject to a learning process. The examples are those of a Monte Carlo analysis of a regression problem and of a dynamic disequilibrium model. It is also an example of an empirical econometric model of the Polish economy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
999.
    
A non‐linear dynamic model is introduced for multiplicative seasonal time series that follows and extends the X‐11 paradigm where the observed time series is a product of trend, seasonal and irregular factors. A selection of standard seasonal and trend component models used in additive dynamic time series models are adapted for the multiplicative framework and a non‐linear filtering procedure is proposed. The results are illustrated and compared to X‐11 and log‐additive models using real data. In particular it is shown that the new procedures do not suffer from the trend bias present in log‐additive models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
1000.
    
In this paper we present an intelligent decision‐support system based on neural network technology for model selection and forecasting. While most of the literature on the application of neural networks in forecasting addresses the use of neural network technology as an alternative forecasting tool, limited research has focused on its use for selection of forecasting methods based on time‐series characteristics. In this research, a neural network‐based decision support system is presented as a method for forecast model selection. The neural network approach provides a framework for directly incorporating time‐series characteristics into the model‐selection phase. Using a neural network, a forecasting group is initially selected for a given data set, based on a set of time‐series characteristics. Then, using an additional neural network, a specific forecasting method is selected from a pool of three candidate methods. The results of training and testing of the networks are presented along with conclusions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号