首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   25篇
  国内免费   36篇
系统科学   2篇
丛书文集   7篇
教育与普及   4篇
综合类   357篇
  2024年   6篇
  2023年   9篇
  2022年   17篇
  2021年   21篇
  2020年   5篇
  2019年   2篇
  2018年   11篇
  2017年   9篇
  2016年   8篇
  2015年   20篇
  2014年   22篇
  2013年   16篇
  2012年   27篇
  2011年   30篇
  2010年   8篇
  2009年   9篇
  2008年   7篇
  2007年   38篇
  2006年   23篇
  2005年   22篇
  2004年   14篇
  2003年   7篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有370条查询结果,搜索用时 46 毫秒
61.
采用固相反应法在650℃合成了LiFe0.7Mn0.3PO4/C。采用X-射线衍射\扫描电镜和电化学测试对材料的结构、表面形貌和电化学性能进行了表征.结果表明,LiFe0.7Mn0.3PO4具有单一的橄榄石结构。碳的加入有效地改变了LiFe0.7Mn0.3PO4的表面形貌。LiFe0.7Mn0.3PO4/C的平均粒度在100-200nm,碳均匀地分布在LiFe0.7Mn0.3PO4的表面。与LiFe0.7Mn0.3PO4相比,LiFe0.7Mn0.3PO4/C具有更高的可逆容量和更好的循环性能以及优秀的倍率性能:0.1C时LiFe0.7Mn0.3PO4/C的可逆容量达到141mAh.g-1,60次循环后平均每周的容量损失只有0.19%,而LiFe0.7Mn0.3PO4平均每周的容量损失只有0.53%,表明碳的加入有效地改善了LiFe0.7Mn0.3PO4的电化学性能。  相似文献   
62.
以醋酸锂、醋酸锰和醋酸镍为原料,羟基乙二酸为螯合剂,通过溶胶-凝胶法制备层状LiMn0.5Ni0.5O2正极材料,得到的产物具有典型的α-NaFeO2层状结构,颗粒尺寸在300~400nm之间。对900℃下制得的层状LiMn0.5Ni0.5O2在2.5~4.3V之间进行充放电测试,电流密度为0.1mAcm-2,其首次放电容量达到了161.2mAhg-1。经过20次循环后,仍然保留了初始容量的88%。  相似文献   
63.
制备了一系列锰系氧化物的纳米棒,作为锂空气电池中的催化剂,对其放电容量和循环性能进行了测试.结果表明高比表面的催化剂有利于Li2O2的分解,使电池的循环性能大大的提高.以刺球型γ-MnO2为催化剂的锂空气电池具有最高的可逆比容量,循环5圈后仍有2350mAh·g^-1,相对整个电极的比容量为1175mAh·g^-1,是常规锂电池的10倍.根据不同MnO2催化剂所表现出的不同催化性能,提出了可能的催化剂失效机理.  相似文献   
64.
简要分析了锂电池的充放电特性,为测试提供了测试参数,讨论了锂电池容量的测试依据,并测试了某品牌1000mAh的锂电池充放电特性以及其容量,为锂电池的快速检测提供了一种测试参数设置依据。  相似文献   
65.
尖晶石型LiMn2O4的溶胶凝胶法制备   总被引:5,自引:1,他引:5  
采用溶胶 凝胶法合成了锂离子电池正极材料LiMn2O4·研究了干凝胶制备锰酸锂的机理·由于干凝胶燃烧时生成的产物颗粒很细,燃烧过程中就有大量的锰酸锂生成,剩下的Mn3O4和Li2O2在300℃左右已完全转化为锰酸锂,大大降低了合成温度·通过对700℃合成的锰酸锂XRD分析表明,样品的衍射峰峰形尖锐,晶型发育良好·考察了pH值对合成样品粒度及电化学性能的影响,SEM分析表明,随pH值增加,所得溶胶制备的锰酸锂电化学容量增加,当pH=6 0时合成样品颗粒分布均匀,达到亚微米级·以0 1C的电流、电压范围3 30~4 35V充放电测试表明,该条件下合成的样品初始放电容量为121.0mAh·g-1,显...  相似文献   
66.
掺杂LaNiO3型双功能氧电极的研究--溶胶-凝胶制备方法   总被引:2,自引:0,他引:2  
为了得到高性能的双效氧电极,研究了钙钛矿型掺杂LaNiO3电催化剂的溶胶-凝胶制备方法,通过热重-差热分析、红外分析、XRD分析以及催化剂的粒径分布分析等手段,探讨了pH值、柠檬酸用量以及焙烧制度对催化剂制备的影响。结果表明,制备LaNiO3的溶胶-凝胶法的最佳工艺条件是:柠檬酸的用量为金属离子总物质的量的1.5倍;pH值调节为9;焙烧制度为在750℃下焙烧2h。  相似文献   
67.
针对锂离子电池的容量恢复现象导致的剩余寿命预测精度不高的问题,提出了一种锂离子电池的多状态模型剩余寿命预测方法.首先通过分析锂电池的衰退数据将锂离子电池的退化过程分为正常退化、容量恢复和加速退化三种状态,然后分别对三种状态的退化过程进行建模并验证了模型的有效性,将3种状态的模型组合得到锂离子电池多状态容量衰退模型.然后基于建立的模型提出了粒子群优化粒子滤波算法,用于多状态容量衰退模型进行参数识别和状态更新.最后实现了锂离子电池的剩余寿命预测和预测结果的不确定性表达.与其他方法相比,实验结果表明:所提出方法精度更高,鲁棒性更强.  相似文献   
68.
纳米级锂离子电池正极材料LiCoO2的制备及表征   总被引:1,自引:0,他引:1  
LiCoO2是锂离子电池中最有前途的正极材料之一,近年来人们对它进行了广泛的研究.这里我们通过两种不同的湿化学方法首次合成了纳米级的LiCoO2:溶胶—凝胶法(方法B)和一种改进了的溶胶—凝胶法(方法C)。为了便于比较,我们也采用了固相反应法(方法A)。用DTA,IR,XRD,TEM等技术对前驱体和LiCoO2纳米颗粒进行了表征.结果表明在600℃煅烧时可以得到晶化程度较好的LiCoO2纳米颗粒,方法A和方法B得到了直径大约为100和40nm的球状颗粒,而方法C主要得到球形颗粒,同时伴有少量小棒形颗粒生成,直径约为50nm。电化学测试表明方法C得到的产物具有最好的性能。  相似文献   
69.
LiNi_(0.8)Co_(0.2)O_2的表面修饰及性能   总被引:3,自引:0,他引:3  
锂离子电池正极材料和电解液之间的恶性相互作用引起正极材料和电池性能的劣化。将 L i Ni0 .8Co0 .2 O2 ,L i OH.H2 O和 H3BO3以摩尔比 10 0 :1:2均匀混合 ,5 0 0℃热处理 10 h,在 L i Ni0 .8Co0 .2 O2 表面包覆上一层 L i2 O- 2 B2 O3玻璃层。用 X光电子能谱、扫描电镜和 X光衍射分析对包覆前后 L i Ni0 .8Co0 .2 O2 的结构进行了表征。结果表明 ,表面修饰有效地抑制了 L i Ni0 .8Co0 .2 O2 和电解液之间的恶性相互作用 ,材料的实际比容量提高 ,充放电循环稳定性改善 ,自放电速率减小。表面修饰处理是改善锂离子电池正极材料综合性能的有效途径  相似文献   
70.
Reducing the dimensions of electrode materials from the micron to the nanoscale can have a profound influence on their properties and hence on the performance of electrochemical devices,e.g.Li-ion batteries,that employ such electrodes.TiO2(B) has received growing interest as a possible anode for Li-ion batteries in recent years.It offers the possibility of higher energy storage compared with the commercialized Li4Ti5O12.Bulk,nanowire,nanotube,and nanoparticle morphologies have been prepared and studied.However,to date these materials have not be compared in one article.In the current review we first summarize the different synthesis methods for the preparation of nanostructured TiO2(B);then present the effects of size and shape on the electrochemical properties.Finally TiO2(B) with nanometer dimensions exhibit a higher capacity to store Li,regardless of rate,due to structural distortions inherent at the nanoscale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号