首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58090篇
  免费   1976篇
  国内免费   3664篇
系统科学   2305篇
丛书文集   2497篇
教育与普及   1533篇
理论与方法论   246篇
现状及发展   354篇
研究方法   3篇
综合类   56792篇
  2024年   354篇
  2023年   1224篇
  2022年   1415篇
  2021年   1667篇
  2020年   1370篇
  2019年   1282篇
  2018年   714篇
  2017年   963篇
  2016年   1185篇
  2015年   1795篇
  2014年   2642篇
  2013年   2737篇
  2012年   3205篇
  2011年   3486篇
  2010年   3546篇
  2009年   3850篇
  2008年   4130篇
  2007年   4062篇
  2006年   3366篇
  2005年   2982篇
  2004年   2824篇
  2003年   2269篇
  2002年   1934篇
  2001年   1666篇
  2000年   1275篇
  1999年   1179篇
  1998年   850篇
  1997年   718篇
  1996年   652篇
  1995年   555篇
  1994年   491篇
  1993年   570篇
  1992年   537篇
  1991年   538篇
  1990年   444篇
  1989年   443篇
  1988年   368篇
  1987年   227篇
  1986年   143篇
  1985年   25篇
  1984年   9篇
  1983年   10篇
  1982年   6篇
  1981年   11篇
  1980年   3篇
  1978年   2篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
201.
现有的基于车载传感器的商用车自动紧急制动(AEB)系统存在视野盲区等原因,功能受到了很大的限制。为了提高商用车AEB系统的安全性和可靠性,该文提出了基于不安全控制行为分析的商用车AEB决策系统优化方法。首先,通过实车测试获取车车通信在不同工况下的通信时延规律,使用该时延规律对环境车的速度、位移和坐标等参数进行补偿修正,弥补通信时延对系统决策造成的影响。然后,制定交叉口路段处的商用车自动紧急制动策略,在两车即将碰撞时控制本车的制动系统以最大的制动减速度自动紧急制动,避免碰撞的发生,并基于不安全控制行为分析,对AEB决策系统进行优化。最后对提出的优化方法进行了仿真和实车测试,结果表明,该方法能够有效地防止两车在交叉口处相撞,具有较高的安全性和可靠性。  相似文献   
202.
尖晶石型LiMn2O4正极材料的电压平台高、原料来源丰富、生产成本低廉,但由于Jahn-Teller效应导致晶格畸变和Mn3+歧化分解导致过渡金属锰的溶解严重影响电池的循环性能。本文探究了不同Mg2+掺杂量对LiMn2O4正极材料电化学性能的影响。采用高温固相法制备了LiMg((x))Mn((2-x))O4(x=0,0.01,0.03,0.05)样品,并对其组织结构和电化学性能进行分析。结果表明,所有样品均为立方尖晶石结构,呈截断八面体形貌。电化学性能测试表明,当x=0.03时,LiMg0.03Mn1.97O4样品在0.2 C下具有较高的放电比容量和最高的首次库伦效率(98.44%),循环稳定性最佳;在0.5 C下循环100圈后仍具有119.3 mAh/g的放电比容量,容量保持率高达92.62%。  相似文献   
203.
考虑到CO2是固定源和移动源废气中的主要组分,Fe2O3是铁基催化剂中的重要活性物质,研究了CO2对Fe2O3催化剂NH3-SCR脱硝性能的影响.结果表明,CO2的加入在300℃以下明显抑制了催化剂的NH3-SCR性能.这主要是因为CO2的存在改变了催化剂表面NH3/NOx的吸附行为,从而影响了NH3-SCR反应.原位漫反射傅里叶变换红外光谱和程序升温脱附实验结果表明,CO2可以被吸附活化成碳酸盐物种;这些碳酸盐物种可以作为新的酸性位点吸附NH3物种,促进催化剂对NH3的吸附;但同时CO2和NOx之间存在竞争吸附,这会导致催化剂表面生成的关键NO2物种和硝酸盐物种的减少,从而...  相似文献   
204.
该文基于Ⅱ型区间删失数据,在OLLGG分布下提出多参数回归模型,通过线性回归刻画分布参数与协变量之间的关系,并通过极大似然方法给出了模型的参数估计,数值模拟验证了模型参数的估计有良好的性质,将提出的模型应用到血友病患者HIV感染的数据中,发现提出的模型对数据有灵活的拟合效果.  相似文献   
205.
文章研究车-桥耦合系统的非线性振动特性,采用有限分段思想,建立1/4车辆模型和变截面连续梁桥的车-桥耦合振动方程,在MATLAB环境下编制基于Runge-Kutta算法的车-桥耦合振动数值分析程序,得到桥梁跨中位移响应;以某三跨混凝土连续梁桥为算例,分析车桥质量比、车辆速度、车辆弹簧刚度、信噪比4组参数的变化对变截面连续梁桥损伤识别的影响。结果发现:车桥质量比和信噪比较大时,桥梁损伤识别效果较好;较低的行车速度有利于桥梁的损伤识别研究;车辆弹簧刚度的影响非常小,可忽略不计。  相似文献   
206.
以聚丙烯接枝马来酸酐(PP-g-MAH)为相容剂,乙烯-乙烯醇共聚物(EVOH)共混改性聚丙烯(PP),研究在不同相容剂含量下,EVOH对PP基体结晶行为的影响,分析PP/EVOH相容体系的等温结晶动力学,阐明PP/EVOH相容体系中PP相的成核与结晶过程。结果显示:EVOH具有异相成核结晶作用,PP/EVOH相容体系成核温度增加6℃左右;体系加入2 wt%的PP-g-MAH后,纯PP的活化能|ΔE|由392 kJ/mol降低至329 kJ/mol,并随着PP-g-MAH含量增加逐渐增大;加入PP-g-MAH后,体系中PP相的Avrami指数n值由2.21±0.04最高增加至2.80±0.17,表明PP晶体由二维生长转变为三维生长模式;PP/EVOH相容体系的半结晶时间■进一步缩短,但随着PP-g-MAH含量增加逐渐增大。  相似文献   
207.
针对半透明介质光学参数估计问题,建立了脉冲激光辐照下半透明介质光学参数反演模型,采用量子微粒群优化(QPSO)算法反演了折射率和吸收系数,分析了测量误差、热物性参数对反演结果的影响,并利用敏感性分析揭示了反演精度与测量误差的关系.计算结果表明:建立的反演模型和采用的QPSO算法可以精确估计折射率和吸收系数,即使人为添加10%的测量误差,反演结果依然具有较强的鲁棒性和准确度.本研究可为半透明介质物性参数获取提供技术参考.  相似文献   
208.
轴承不对中可能导致保持架断裂和滚珠分布误差.为了分析不对中及滚珠分布误差对轴承刚度波动的影响,考虑外载荷及内、外圈不对中耦合情况,提出了一种含滚珠分布误差的深沟球轴承拟静力学模型.基于所提模型,进一步分析了外载荷及内、外圈不对中状态下,滚珠分布误差对深沟球轴承径向、轴向及倾覆刚度波动特性的影响.结果表明:外载荷及外圈不对中情况下,轴承刚度以滚珠通过外圈周期,即变柔度(VC,variable compliance)振动为周期进行波动.此时,滚珠分布误差的存在,会使轴承刚度以保持架转动周期进行规律性大幅波动.随主轴旋转的内圈不对中会使轴承刚度以一半的内圈转动周期进行波动,且滚珠分布误差会使刚度波动幅值增加.  相似文献   
209.
长7储层是鄂尔多斯盆地主要的致密区块,近一半的致密油分布其中。针对长7储层开采渗透率低、开采难度大、依靠弹性开采产能较低、能量衰竭较快等问题,通过数值模拟的方法,构建水平井分段压裂数值模拟模型,首先对比不同吞吐方式对油田产能的影响,优选出CO2吞吐为首选的补充能量方式。其次对井网形式、井网参数及吞吐参数进行优化研究。最终优选出合适的吞吐方案,达到提高生产效率的目的。结果表明,该储层的最优注采吞吐参数为:周期注入量为2 673 t、注入压力为21 MPa、注入速度为90 t/d、焖井时间为10 d。研究对鄂尔多斯盆地长7储层提高采收率具有一定的参考意义。  相似文献   
210.
红背桂树叶提取物绿色合成铁纳米颗粒(Fe NPs)在水环境修复领域具有很高的应用潜力。但由于Fe NPs存在团聚、易氧化等不稳定因素,在去除污染物时抑制了反应活性。为了解决这一问题,使用一步法制备了高岭土负载Fe NPs (K-Fe NPs),并系统地检测了其对孔雀石绿和Pb2+混合污染物的去除反应活性。采用X射线衍射(XRD)和傅里叶红外光谱(FTIR)对Fe NPs、高岭土和K-Fe NPs进行表征和分析。3种材料对比实验结果表明,K-Fe NPs对单独的孔雀石绿和Pb2+的去除效率(99.10%和93.41%)优于Fe NPs(93.67%和85.33%)和高岭土(32.54%和12.50%)。此外,K-Fe NPs经过4次重复循环对孔雀石绿和Pb2+的去除率仍分别为74.02%和55.48%。结果表明,K-Fe NPs在染料和重金属离子复合污染修复领域具有一定应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号