首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   743篇
  免费   66篇
  国内免费   25篇
系统科学   24篇
丛书文集   8篇
教育与普及   10篇
理论与方法论   1篇
现状及发展   325篇
综合类   451篇
自然研究   15篇
  2024年   1篇
  2023年   8篇
  2022年   10篇
  2021年   9篇
  2020年   14篇
  2019年   13篇
  2018年   9篇
  2017年   14篇
  2016年   12篇
  2015年   15篇
  2014年   25篇
  2013年   18篇
  2012年   43篇
  2011年   27篇
  2010年   25篇
  2009年   152篇
  2008年   169篇
  2007年   51篇
  2006年   33篇
  2005年   29篇
  2004年   16篇
  2003年   18篇
  2002年   18篇
  2001年   18篇
  2000年   12篇
  1999年   11篇
  1998年   9篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   12篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
排序方式: 共有834条查询结果,搜索用时 15 毫秒
81.
Large conductance, Ca2+-activated potassium (BK) channels are widely expressed throughout the animal kingdom and play important roles in many physiological processes, such as muscle contraction, neural transmission and hearing. These physiological roles derive from the ability of BK channels to be synergistically activated by membrane voltage, intracellular Ca2+ and other ligands. Similar to voltage-gated K+ channels, BK channels possess a pore-gate domain (S5–S6 transmembrane segments) and a voltage-sensor domain (S1–S4). In addition, BK channels contain a large cytoplasmic C-terminal domain that serves as the primary ligand sensor. The voltage sensor and the ligand sensor allosterically control K+ flux through the pore-gate domain in response to various stimuli, thereby linking cellular metabolism and membrane excitability. This review summarizes the current understanding of these structural domains and their mutual interactions in voltage-, Ca2+ - and Mg2+ -dependent activation of the channel. Received 25 September 2008; received after revision 23 October 2008; accepted 24 October 2008  相似文献   
82.
Studies on identification, derivation and characterization of human stem cells in the last decade have led to high expectations in the field of regenerative medicine. Although it is clear that for successful stem cell-based therapy several obstacles have to be overcome, other opportunities lay ahead for the use of human stem cells. A more immediate application would be the development of human models for cell-type specific differentiation and disease in vitro. Cardiomyocytes can be generated from stem cells, which have been shown to follow similar molecular events of cardiac development in vivo. Furthermore, several monogenic cardiovascular diseases have been described, for which in vitro models in stem cells could be generated. Here, we will discuss the potential of human embryonic stem cells, cardiac stem cells and the recently described induced pluripotent stem cells as models for cardiac differentiation and disease. Received 07 August 2008; received after revision 26 September 2008; accepted 03 October 2008  相似文献   
83.
Little is known about the fate of machinery proteins of the protein quality control and endoplasmic reticulum(ER)-associated degradation (ERAD). We investigated the degradation of the ERAD component EDEM1, which directs overexpressed misfolded glycoproteins to degradation. Endogenous EDEM1 was studied since EDEM1 overexpression not only resulted in inappropriate occurrence throughout the ER but also caused cytotoxic effects. Proteasome inhibitors had no effect on the clearance of endogenous EDEM1 in non-starved cells. However, EDEM1 could be detected by immunocytochemistry in autophagosomes and biochemically in LC3 immuno-purified autophagosomes. Furthermore, influencing the lysosome-autophagy pathway by vinblastine or pepstatin A/E64d and inhibiting autophagosome formation by 3-methyladenine or ATGs short interfering RNA knockdown stabilized EDEM1. Autophagic degradation involved removal of cytosolic Triton X-100-insoluble deglycosylated EDEM1, but not of EDEM1-containing ER cisternae. Our studies demonstrate that endogenous EDEM1 in cells not stressed by the expression of a transgenic misfolded protein reaches the cytosol and is degraded by basal autophagy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 15 January 2009; received after revision 16 February 2009; accepted 17 February 2009 V. Le Fourn, K. Gaplovska-Kysela: These authors equally contributed to this work.  相似文献   
84.
Methylation of lysine residues of histones is associated with functionally distinct regions of chromatin, and, therefore, is an important epigenetic mark. Over the past few years, several enzymes that catalyze this covalent modification on different lysine residues of histones have been discovered. Intriguingly, histone lysine methylation has also been shown to be cross-regulated by histone ubiquitination or the enzymes that catalyze this modification. These covalent modifications and their cross-talks play important roles in regulation of gene expression, heterochromatin formation, genome stability, and cancer. Thus, there has been a very rapid progress within past several years towards elucidating the molecular basis of histone lysine methylation and ubiquitination, and their aberrations in human diseases. Here, we discuss these covalent modifications with their cross-regulation and roles in controlling gene expression and stability. Received 24 September 2008; received after revision 21 November 2008; accepted 28 November 2008  相似文献   
85.
The trefoil factor family (TFF) comprises a group of small peptides which are highly expressed in tissues containing mucus-producing cells – especially in the mucosa lining the gastrointestinal tract. The peptides seem crucial for epithelial restitution and may work via other pathways than the conventional factors involved in restitution. In vitro studies have shown that the TFFs promote restitution using multiple mechanisms. The peptides also have other functionalities including interactions with the immune system. Moreover, therapeutic effects of the TFFs have been shown in several animal models of gastrointestinal damage. Still it is not clear which of their in vitro properties are involved in the in vivo mode of action. This review describes the TFF family with emphasis on their biological properties and involvement in mucosal protection and repair. Received 10 October 2008; received after revision 07 November 2008; accepted 10 November 2008  相似文献   
86.
Cytoplasmic translation is under sophisticated control but how cells adapt its rate to constitutive loss of mitochondrial oxidative phosphorylation is unknown. Here we show that translation is repressed in cells with the pathogenic A3243G mtDNA mutation or in mtDNA-less ρ0 cells by at least two distinct pathways, one transiently targeting elongation factor eEF-2 and the other initiation factor eIF-2α constitutively. Under conditions of exponential cell growth and mammalian target of rapamycin (mTOR) activation, eEF-2 becomes transiently phosphorylated by an AMP-activated protein kinase (AMPK)-dependent pathway, especially high in mutant cells. Independent of AMPK and mTOR, eIF-2α is constitutively phosphorylated in mutant cells, likely a signature of endoplasmic reticulum (ER)-stress response induced by the loss of oxidative phosphorylation. While the AMPK/eEF-2K/eEF-2 pathway appears to function in adaptation to physiological fluctuations in ATP levels in the mutant cells, the ER stress signified by constitutive protein synthesis inhibition through eIF-2α-mediated repression of translation initiation may have pathobiochemical consequences. Received 29 October 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   
87.
Reticulons (RTNs) are membrane-spanning proteins sharing a typical domain named reticulon homology domain (RHD). RTN genes have been identified in all eukaryotic organisms examined so far, and the corresponding proteins have been found predominantly associated to the endoplasmic reticulum membranes. In animal and yeast, in which knowledge of the protein family is more advanced, RTNs are involved in numerous cellular processes such as apoptosis, cell division and intracellular trafficking. Up to now, a little attention has been paid to their plant counterparts, i.e., RTNLBs. In this review, we summarize the data available for RTNLB proteins and, using the data obtained with animal and yeast models, several functions for RTNLBs in plant cells are proposed and discussed. Received 01 July 2008; received after revision 08 September 2008; accepted 30 September 2008  相似文献   
88.
Apolipoprotein M (apoM) is a novel apolipoprotein found mainly in high-density lipoproteins (HDL). Its function is yet to be defined. ApoM (25 kDa) has a typical lipocalin ?-barrel fold and a hydrophobic pocket. Retinoids bind apoM but with low affinity and may not be the natural ligands. ApoM retains its signal peptide, which serves as a hydrophobic anchor to the lipoproteins. This prevents apoM from being lost in the urine. Approximately 5% of HDL carries an apoM molecule. ApoM in plasma (1 μM) correlates strongly with both low-density lipoprotein (LDL) and HDL cholesterol, suggesting a link to cholesterol metabolism. However, in casecontrol studies, apoM levels in patients with coronary heart disease (CHD) and controls were similar, suggesting apoM levels not to affect the risk for CHD in humans. Experiments in transgenic mice suggested apoM to have antiatherogenic properties; possible mechanisms include increased formation of pre-? HDL, enhanced cholesterol mobilization from foam cells, and increased antioxidant properties. Received 28 November 2008; received after revision 15 December 2008; accepted 16 December 2008  相似文献   
89.
The endoplasmic reticulum (ER) is involved in a variety of essential and interconnected processes in human cells, including protein biogenesis, signal transduction, and calcium homeostasis. The central player in all these processes is the ER-lumenal polypeptide chain binding protein BiP that acts as a molecular chaperone. BiP belongs to the heat shock protein 70 (Hsp70) family and crucially depends on a number of interaction partners, including co-chaperones, nucleotide exchange factors, and signaling molecules. In the course of the last five years, several diseases have been linked to BiP and its interaction partners, such as a group of infectious diseases that are caused by Shigella toxin producing E. coli. Furthermore, the inherited diseases Marinesco-Sj?gren syndrome, autosomal dominant polycystic liver disease, Wolcott-Rallison syndrome, and several cancer types can be considered BiP-related diseases. This review summarizes the physiological and pathophysiological characteristics of BiP and its interaction partners. Received 20 November 2008; received after revision 09 December 2008; accepted 12 December 2008  相似文献   
90.
A large number of compounds mimicking the structures of monosaccharides or oligosaccharides have been discovered from natural sources. Such sugar mimics inhibit carbohydrate-degrading enzymes because of a structural resemblance to the sugar moiety of the natural substrate. Carbohydrate-degrading enzymes are involved in a wide range of important biological processes, such as intestinal digestion, posttranslational processing of the sugar chain of glycoproteins, their quality control mechanisms, lysosomal catabolism of glycoconjugates, and some viral infections. It has now been realized that inhibitors of the enzymes have enormous therapeutic potential in diabetes and lysosomal storage disorders. In this review, the general bioactivity, current applications, and the prospects for new therapeutic applications are described. Received 27 August 2008; received after revision 08 November 2008; accepted 03 December 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号