首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15195篇
  免费   487篇
  国内免费   765篇
系统科学   159篇
丛书文集   746篇
教育与普及   561篇
理论与方法论   80篇
现状及发展   95篇
综合类   14806篇
  2024年   94篇
  2023年   335篇
  2022年   411篇
  2021年   478篇
  2020年   330篇
  2019年   327篇
  2018年   199篇
  2017年   238篇
  2016年   307篇
  2015年   417篇
  2014年   532篇
  2013年   752篇
  2012年   853篇
  2011年   889篇
  2010年   922篇
  2009年   1004篇
  2008年   924篇
  2007年   880篇
  2006年   788篇
  2005年   752篇
  2004年   646篇
  2003年   672篇
  2002年   603篇
  2001年   554篇
  2000年   412篇
  1999年   348篇
  1998年   222篇
  1997年   259篇
  1996年   227篇
  1995年   217篇
  1994年   170篇
  1993年   116篇
  1992年   129篇
  1991年   149篇
  1990年   118篇
  1989年   74篇
  1988年   45篇
  1987年   31篇
  1986年   14篇
  1985年   4篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
排序方式: 共有10000条查询结果,搜索用时 397 毫秒
121.
为了从多物理场耦合的角度解释弥散分布于其中的ZnO非均匀局域结构对陶瓷基体压电性能的增强机理,运用COMSOL Multiphysics结构力学模块中的压电设备模块,对ZnO复合表面0-3型BaTiO3压电复合陶瓷进行有限元仿真分析。结果表明:弥散分布的ZnO非均匀局域结构导致整个样品性能分布不均匀,即在ZnO附近,同时获得小的压电应力和较大的压电极化强度;通过增加样品的孔数目和弥散度等方式,可以改善模拟的BaTiO3陶瓷性能的不均匀性,进而获得BaTiO3复合陶瓷均匀的增强压电性能。研究结果为BaTiO3陶瓷电性能的优化提供了新思路。  相似文献   
122.
尖晶石型LiMn2O4正极材料的电压平台高、原料来源丰富、生产成本低廉,但由于Jahn-Teller效应导致晶格畸变和Mn3+歧化分解导致过渡金属锰的溶解严重影响电池的循环性能。本文探究了不同Mg2+掺杂量对LiMn2O4正极材料电化学性能的影响。采用高温固相法制备了LiMg((x))Mn((2-x))O4(x=0,0.01,0.03,0.05)样品,并对其组织结构和电化学性能进行分析。结果表明,所有样品均为立方尖晶石结构,呈截断八面体形貌。电化学性能测试表明,当x=0.03时,LiMg0.03Mn1.97O4样品在0.2 C下具有较高的放电比容量和最高的首次库伦效率(98.44%),循环稳定性最佳;在0.5 C下循环100圈后仍具有119.3 mAh/g的放电比容量,容量保持率高达92.62%。  相似文献   
123.
考虑到CO2是固定源和移动源废气中的主要组分,Fe2O3是铁基催化剂中的重要活性物质,研究了CO2对Fe2O3催化剂NH3-SCR脱硝性能的影响.结果表明,CO2的加入在300℃以下明显抑制了催化剂的NH3-SCR性能.这主要是因为CO2的存在改变了催化剂表面NH3/NOx的吸附行为,从而影响了NH3-SCR反应.原位漫反射傅里叶变换红外光谱和程序升温脱附实验结果表明,CO2可以被吸附活化成碳酸盐物种;这些碳酸盐物种可以作为新的酸性位点吸附NH3物种,促进催化剂对NH3的吸附;但同时CO2和NOx之间存在竞争吸附,这会导致催化剂表面生成的关键NO2物种和硝酸盐物种的减少,从而...  相似文献   
124.
基于信阳市2017—2020年细颗粒物(PM2.5)和臭氧(O3)浓度数据及同期地面气象观测资料,利用Kolmogorov-Zurbenko(KZ)滤波法将原始浓度序列分解为短期分量、季节分量和长期分量,采用逐步回归方法建立污染物基线分量和短期分量与相应尺度气象要素的线性回归模型,通过对残差进行滤波和序列重建,得到去除气象影响的污染物长期变化趋势,该浓度仅与污染物的排放量有关。结果表明,PM2.5和O3浓度的波动主要由污染源排放及气象条件的短期变化和季节变化引起,气象条件对PM2.5季节分量和O3长期分量影响较大。信阳市PM2.5污染排放减弱,O3污染排放先升高,在2018年10月后降低。由于污染排放导致的2017—2020年PM2.5和O3长期分量分别降低3.5、1.5μg/(m3·a)。  相似文献   
125.
为了突破传统测温技术应用的局限性,利用NaY (WO42:Eu3+玻璃陶瓷(glass ceramics,GC)实现了具有非接触、实时响应、自校准等优势的双模荧光强度比(luminescence intensity ratio,LIR)测温。采用高温熔融淬灭法制备出含NaY (WO42:Eu3+纳米晶的透明GC样品,并进行系列光谱测量和热敏性能分析。结果表明,样品中Eu3+的激发态能级5D15D0和基态能级7F27F0为两对独立的热耦合能级,可分别基于这两对热耦合能级实现性能优异的双模LIR温度传感。该双模LIR测温技术数据可靠、测温范围广、灵敏度高,再结合GC材料优势,是可用于光纤温度传感器的核心技术材料。  相似文献   
126.
利用RGB-D数据进行三维点云配准时容易陷入局部最优.针对这个难题,提出了一种基于多维特征的PVDAC描述子实现三维点云配准的方法.该方法首先通过ORB特征检测算法提取二维数据的关键点,并计算关键点在2D下的灰度特征,然后构建关键点在3D下的局部像素值距离、点云法线角度以及曲率特征,接着将2D特征和3D特征联合生成全新的PVDAC像素描述子,并利用PVDAC像素描述子描述关键点实现三维点云的粗配准,最后基于ICP算法完成三维点云的精细化配准.实验表明,本文算法在大场景点云配准时总体均方误差约为0.05 m2,在小场景单物体点云配准时达到了0.000 2 m2的较小误差,实现了三维点云的精确配准.  相似文献   
127.
立方尖晶石结构的Li2ZnTi3O8(LZTO)具有成本低和安全性高的优势,被认为是代替碳材料作为锂离子电池负极材料的理想选择。然而,Li+和Zn2+离子位于LZTO的四面体位点,在一定程度上阻碍了离子的迁移,导致LZTO电导率差,锂离子扩散系数低。LiAlO2的包覆有效避免了电极表面与有机电解质的接触,从而减少了副反应的发生。因此,本文采用简单的高温固相法合成了Li2ZnTi3O8@LiAlO2复合材料。结果表明:LiAlO2改性未改变LZTO的形貌和粒径,但是提高了其结构稳定性、锂离子脱嵌的可逆性和电化学活性,促进了锂离子的迁移。Li2ZnTi3O8@LiAlO2 (8wt%)在0.5 C、1 C、2 C、3 C和5 C时的充电容量分别为203.9、194.8、187.4、180.6和177.1 mAh·g?1,表现出良好的倍率性能。然而,在相同的倍率下,纯LZTO仅有134.5、109.7、89.4、79.9和72.9 mAh·g?1的容量。即使在较大的充放电倍率下,Li2ZnTi3O8@LiAlO2(8wt%)材料也表现出良好的循环性能。在5 C倍率循环150次后后,Li2ZnTi3O8@LiAlO2(8wt%)仍具有263.5/265.8 mAh·g?1的充放电容量。LiAlO2的引入增强了LZTO材料的电子导电性,使Li2ZnTi3O8@LiAlO2复合材料具有优异的电化学性能。  相似文献   
128.
由于四氧化三锰基氧化物负极材料体积变化大、导电性差,且其循环寿命短,倍率性能差,阻碍了它们的发展。在这项研究中,我们使用一种智能且简单的合成方法成功地制备了四氧化三锰与氮掺杂蜂窝碳复合材料。四氧化三锰纳米多面体生长在氮掺杂蜂窝碳上,这明显减轻了充放电过程中的体积变化,而且也改善了电化学反应动力学。更重要的是,四氧化三锰与氮掺杂蜂窝碳复合材料中的Mn–O–C键有利于电化学可逆性。四氧化三锰与氮掺杂蜂窝碳复合材料的这些特征是其优异电化学性能的原因。当用于锂离子电池时,在1 A·g?1下进行350次循环后,四氧化三锰与氮掺杂蜂窝碳负极表现出598 mAh·g?1的高可逆容量。即使在2 A·g?1下,四氧化三锰与氮掺杂蜂窝碳负极仍能提供472 mAh·g?1的高容量。这项工作为合成和开发锰基氧化物储能材料提供了新的前景。  相似文献   
129.
3—己烯—1—醇及其酯类的合成和香气研究   总被引:7,自引:1,他引:6  
介绍了叶醇(cis-3-己烯-1-醇)及其异构体的实用合成路线。由顺反混合(或全反式)3-己烯-1-醇制备了一系列羧酸酯,研究了这些化合物的结构与香气的关系,从中发现一些有实用价值的新香料。  相似文献   
130.
该文引入了一类包含S-闭空间的拓扑空间——WS*-闭空间,并讨论了它的一些性质,对一些关于S-闭空间的已知命题,建立或推广得到WS*-闭空间的相应命题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号