全文获取类型
收费全文 | 1988篇 |
免费 | 67篇 |
国内免费 | 168篇 |
专业分类
系统科学 | 27篇 |
丛书文集 | 63篇 |
教育与普及 | 32篇 |
理论与方法论 | 8篇 |
现状及发展 | 169篇 |
研究方法 | 1篇 |
综合类 | 1882篇 |
自然研究 | 41篇 |
出版年
2024年 | 12篇 |
2023年 | 10篇 |
2022年 | 13篇 |
2021年 | 15篇 |
2020年 | 12篇 |
2019年 | 24篇 |
2018年 | 18篇 |
2017年 | 25篇 |
2016年 | 17篇 |
2015年 | 28篇 |
2014年 | 84篇 |
2013年 | 48篇 |
2012年 | 109篇 |
2011年 | 85篇 |
2010年 | 70篇 |
2009年 | 109篇 |
2008年 | 114篇 |
2007年 | 144篇 |
2006年 | 140篇 |
2005年 | 137篇 |
2004年 | 124篇 |
2003年 | 112篇 |
2002年 | 124篇 |
2001年 | 85篇 |
2000年 | 73篇 |
1999年 | 82篇 |
1998年 | 59篇 |
1997年 | 43篇 |
1996年 | 41篇 |
1995年 | 31篇 |
1994年 | 55篇 |
1993年 | 31篇 |
1992年 | 23篇 |
1991年 | 35篇 |
1990年 | 22篇 |
1989年 | 19篇 |
1988年 | 25篇 |
1987年 | 5篇 |
1986年 | 9篇 |
1985年 | 9篇 |
1984年 | 2篇 |
排序方式: 共有2223条查询结果,搜索用时 0 毫秒
11.
CDC16Hs是细胞周期末期促进复合物(APC)的亚基.利用基于LexA的酵母双杂交系统,把它作为诱饵蛋白筛选人胎脑文库,发现它与DNA双链断端修复蛋白Ku80的羧基端相互作用.CDC16Hs和全长Ku80的结合通过pull down实验在体外得到验证. 相似文献
12.
13.
DNA芯片技术是近年来生命科学与信息科学的新兴研究领域,其突出特点在于它的高度并行性、多样化、微型化以及自动化.最短公共超串问题是计算机科学中的NP-完全问题.笔者在DNA计算和DNA芯片基础上,提出了基于DNA芯片解决最短公共超串问题的DNA计算新模型.该模型可对信息高度并行获取,并且具有操作易自动化的优点. 相似文献
14.
DNA在生物界中,堪称生物大分子中最重要者,主宰一切生物体维持其生命的各种机能的正常运行及每个物种一代一代繁衍于世,其结构是相对稳定的. 相似文献
16.
Gene inactivation triggered by recognition between DNA repeats 总被引:15,自引:0,他引:15
This chapter focuses on phenomena of gene inactivation resulting from the presence of repeated gene copies within the genome of plants and fungi, and on their possible relationships to homologous DNA-DNA interactions. Emphasis is given to two related premeiotic processes: Methylation Induced Premeiotically (MIP) and Repeat-Induced Point mutation (RIP) which take place in the fungiAscobolus immersus andNeurospora crassa, respectively. The relationships between these processes and genetic recombination are discussed. 相似文献
17.
18.
DNA指纹技术的研究进展及应用 总被引:4,自引:0,他引:4
DNA指纹技术是分子生物学中的一种新技术.它是从分子水平区别不同种类生物之间以及同种生物之间差异的重要手段.它在法医学鉴定、物种起源进化研究、动植物及微生物DNA指纹资料库的建立、畜牧科学研究、癌症的研究、疾病的诊断、亲子鉴定等方面具有非常重要的应用.本文简要阐述DNA指纹技术的研究进展及其应用。 相似文献
19.
Kirkpatrick DT 《Cellular and molecular life sciences : CMLS》1999,55(3):437-449
Numerous proteins are involved in the nucleotide excision repair (NER) and DNA mismatch repair (MMR) pathways. The function
and specificity of these proteins during the mitotic cell cycle has been actively investigated, in large part due to the involvement
of these systems in human diseases. In contrast, comparatively little is known about their functioning during meiosis. At
least three repair pathways operate during meiosis in the yeast Saccharomyces cerevisiae to repair mismatches that occur as a consequence of heteroduplex formation in recombination. The first pathway is similar
to the one acting during postreplicative mismatch repair in mitotically dividing cells, while two pathways are responsible
for the repair of large loops during meiosis, using proteins from MMR and NER systems. Some MMR proteins also help prevent
recombination between diverged sequences during meiosis, and act late in recombination to affect the resolution of crossovers.
This review will discuss the current status of DNA mismatch repair and nucleotide excision repair proteins during meiosis,
especially in the yeast S. cerevisiae.
Received 21 September 1998; received after revision 23 November 1998; accepted 23 November 1998 相似文献
20.
Immune responses to DNA vaccines 总被引:16,自引:0,他引:16
DNA vaccines, based on plasmid vectors expressing an antigen under the control of a strong promoter, have been shown to induce
protective immune responses to a number of pathogens, including viruses, bacteria and parasites. They have also displayed
efficacy in treatment or prevention of cancer, allergic diseases and autoimmunity. Immunologically, DNA vaccines induce a
full spectrum of immune responses that include cytolytic T cells, T helper cells and antibodies. The immune response to DNA
vaccines can be enhanced by genetic engineering of the antigen to facilitate its presentation to B and T cells. Furthermore,
the immune response can be modulated by genetic adjuvants in the form of vectors expressing biologically active determinants
or by more traditional adjuvants that facilitate uptake of DNA into cells. The ease of genetic manipulation of DNA vaccines
invites their use not only as vaccines but also as research tools for immunologists and microbiologists.
Received 26 October 1998; received after revision 3 December 1998; accepted 3 December 1998 相似文献