首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   13篇
  国内免费   13篇
丛书文集   34篇
教育与普及   4篇
综合类   386篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   10篇
  2013年   7篇
  2012年   12篇
  2011年   11篇
  2010年   15篇
  2009年   13篇
  2008年   25篇
  2007年   22篇
  2006年   13篇
  2005年   18篇
  2004年   20篇
  2003年   13篇
  2002年   17篇
  2001年   21篇
  2000年   11篇
  1999年   16篇
  1998年   22篇
  1997年   17篇
  1996年   21篇
  1995年   25篇
  1994年   16篇
  1993年   7篇
  1992年   9篇
  1991年   12篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1983年   1篇
排序方式: 共有424条查询结果,搜索用时 15 毫秒
421.
根据界面剪切失效理论和疲劳损伤累积理论,建立了基于枪管镀层—基体界面剪切疲劳损伤累积的枪管寿命预测模型.以某小口径步枪枪管为研究对象,计算了一个冷却周期射击过程中的枪管界面剪切应力,预测了3种不同基体材料枪管的寿命,研究了基体材料高温强度对枪管寿命的影响.研究结果表明,基体材料高温强度是影响枪管寿命的至关重要因素.温度升高引起的界面抗拉强度下降,是导致镀层产生界面破坏以及枪管寿终的重要诱因.增加材料常温强度对提高枪管寿命意义不大,而增加高温强度则可以显著提升枪管寿命.寿命试验结果验证了本文所建寿命预测模型的可用性及预测结果的正确性.   相似文献   
422.
为研究枪管镀层材料性能对枪管寿命的影响,综合运用身管镀层剪切失效理论和疲劳损伤累积理论,提出了基于镀层界面剪切疲劳损伤的枪管寿命预测模型.以某小口径步枪为研究对象,基于有限差分法,对内膛涂镀铬、钽和氮化硅三种不同材料的枪管在10连发射击过程中的温度场分布、镀层内应力分布以及枪管寿命进行了数值计算,研究了镀层材料的热及力学特性对枪管寿命的影响.研究结果表明,镀层的热扩散系数、影响因子η及断裂长厚比是影响枪管寿命的几个关键性能,其中断裂长厚比对界面切应力和枪管寿命的影响最大,拥有较大断裂长厚比的镀层可以在射击过程中显著降低界面切应力,进而提高枪管寿命.   相似文献   
423.
利用生物柴油副产物甘油和CO2干重整制取高附加值合成气,关键是高性能催化剂的选择和研究。通过胶体溶液燃烧法制备了CoFe/CeO2催化剂,在固定床反应器中,温度范围650~800 ℃条件下,研究了CO2与甘油干重整过程中的催化活性和稳定性。结果表明,胶体溶液燃烧法制备的CoFe/CeO2催化剂具有典型的介孔结构,比表面积为33.4~40.8 m2/g,表现出了活性组分Co-Fe与载体CeO2较强的相互作用。 7CoFeCe显示出了较好的干重整催化性能,750 ℃下甘油转化率达84.8%,CO2转化率达19.9%。随着温度的升高,CO2转化率提高,在800 ℃下,CO2转化率达到了30.3%,表明高温有利于逆水汽变换反应。稳定性实验表明,介孔CoFe/CeO2催化剂具有较好的干重整稳定性。  相似文献   
424.
本文采用不同比例的Ni–Cr纳米氧化物对纯Ni及其复合材料进行涂层,研究其涂层特性、力学性能和腐蚀性能。成分分布均匀的Ni–Cr纳米氧化物复合材料首次通过化学共沉淀法合成. 采用电沉积法将纯Ni和Ni–(Ni–Cr)氧化物(10、20、30、40和50 g/L)涂在钢板上。采用透射电子显微镜和场发射扫描电子显微镜观察了粉末和涂层的微观结构,并采用X射线衍射分析研究其化学成分。本文还测试了涂层的显微硬度、厚度和耐磨性,进行了极化和电化学阻抗谱(EIS)测试,分析了涂层的腐蚀行为,并开发了相应的等效电路。结果表明,在10–30 g/L的Ni基体中,纳米氧化物分布均匀,并检测到高浓度的团聚氧化物。30 g/L的Ni基体涂层的显微硬度最大,为HV 661, 厚度为116 μm), 并具有最大耐磨性. 一个三回路等效电路与所有EIS数据相对应。纳米氧化物浓度为30 g/L时,耐蚀性增加,不过当纳米氧化物浓度为40 g/L时,耐蚀性下降。50 g/L的样品耐腐蚀性能最好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号