全文获取类型
收费全文 | 2330篇 |
免费 | 124篇 |
国内免费 | 173篇 |
专业分类
系统科学 | 124篇 |
丛书文集 | 98篇 |
教育与普及 | 33篇 |
理论与方法论 | 2篇 |
现状及发展 | 14篇 |
综合类 | 2356篇 |
出版年
2024年 | 85篇 |
2023年 | 314篇 |
2022年 | 356篇 |
2021年 | 393篇 |
2020年 | 243篇 |
2019年 | 193篇 |
2018年 | 58篇 |
2017年 | 55篇 |
2016年 | 30篇 |
2015年 | 27篇 |
2014年 | 39篇 |
2013年 | 35篇 |
2012年 | 51篇 |
2011年 | 35篇 |
2010年 | 43篇 |
2009年 | 76篇 |
2008年 | 39篇 |
2007年 | 43篇 |
2006年 | 42篇 |
2005年 | 47篇 |
2004年 | 36篇 |
2003年 | 34篇 |
2002年 | 26篇 |
2001年 | 27篇 |
2000年 | 20篇 |
1999年 | 34篇 |
1998年 | 26篇 |
1997年 | 26篇 |
1996年 | 23篇 |
1995年 | 29篇 |
1994年 | 12篇 |
1993年 | 25篇 |
1992年 | 18篇 |
1991年 | 26篇 |
1990年 | 12篇 |
1989年 | 24篇 |
1988年 | 8篇 |
1987年 | 11篇 |
1986年 | 6篇 |
排序方式: 共有2627条查询结果,搜索用时 0 毫秒
81.
针对目标识别需求,对基于神经网络的深度学习方法展开研究。由于深度学习模型中包含了对数据的先验假设,因此人工设计神经网络需要领域内专家丰富的先验知识,且具有劳动密集与时间成本高的缺点。为了获得超越专家个人经验、表现更好的网络,采用一种可微神经结构搜索的高效结构搜索方法,将搜索空间放宽为连续的空间,然后通过梯度下降来优化体系结构的验证集性能,从而找到面向目标识别的最优神经网络结构。仿真实验结果表明,将基于神经网络结构搜索的目标识别方法应用于"低慢小"类目标识别是可行的。 相似文献
82.
83.
当前的图像特征识别大多采用的是传统的机器学习方法与卷积神经网络方法。传统的机器学习对图像识别的研究,特征提取多是通过人工完成,泛化能力不够强。最早的卷积神经网络也存在诸多缺陷,如硬件要求高,需要的训练样本量大,训练时间长。针对以上问题,提出了一种改进的神经网络模型,在LeNet-5模型的基础上并在保证识别率的情况下,简化网络结构,提高训练速度。将改进的网络结构在MINIST字符库上进行识别实验,分析网络结构在不同参量中的识别能力,并与传统算法进行对比分析。结果表明提出的改进结构在当前识别正确率上,明显高于传统的识别算法,为当前的图像识别提供新的参考。 相似文献
84.
小图像由于像素少、分辨率低、整幅图像包含信息较少,识别较为困难。目前优秀的深度卷积神经网络模型多为大图像而设计,而用于小图像的模型则存在着层次不够深、难以对特征进行充分抽象的不足。本文基于VGG19模型,依据卷积核分解的原理,设计了一种KDS-DCNN模型,模型深度达到31层,解决了目前超深度模型不能直接用于小图像识别的问题,实验表明该方法不但提升了识别性能,而且还降低了模型的时间复杂度。在CIFAR-10、CIFAR-100和SVHN三个数据集上的验证结果显示,KDS-DCNN模型性能优越,其识别错误率分别降低到29.46%、6.02%和2.17%。 相似文献
85.
针对现有的网络安全态势预测模型预测精确度低且泛化能力差等问题,提出一种基于Stacking模型融合的态势预测方法。该方法中,借助Stacking算法将TCN网络、WaveNet、GRU、LSTM进行集成挖掘态势数据之间的相关性;之后利用逻辑回归进行预测得到最终态势值;利用粒子群优化算法进行参数寻优,提升模型性能。基于2个数据集进行验证,实验表明,所提预测方法具有较小的均方误差和平均绝对误差,收敛速度较快,拟合度均可达0.999,可以很好解决预测精确度低的问题,提升了模型的泛化能力。 相似文献
86.
为了提高推荐算法的推荐性能,在序列建模过程中,针对循环神经网络(recurrent neural network,RNN)无法并行运算导致建模速度与准确度较低,以及在偏好预测过程中对用户不同阶段偏好没有动态融合的问题,提出了一种基于混合神经网络的序列推荐算法.在算法模型的用户交互序列建模阶段,考虑到用户近期偏好变化频繁... 相似文献
87.
近年来,基于卷积神经网络深度学习的感知算法在自动驾驶车辆环境感知系统中发挥着越来越重要的作用。由于在神经网络训练过程中,训练数据无法覆盖所有极端场景,因此如何保证基于深度学习的感知算法在极端场景下的安全性和可靠性,仍是一个亟待解决的问题。传统的基于真实行驶里程的验证方法,在获取极端场景数据上危险性高,经济性差,因此很难检验驾驶功能在极端场景下的性能。基于虚拟场景的仿真验证方法,虽然可以通过设置场景参数来生成大量测试场景,但是通过简单的参数组合并不能有效的生成极端场景。本文展示了一种在虚拟环境中生成极端场景的方法,用于训练和测试基于深度卷积神经网络的车道线识别算法。首先将场景特征用参数进行表示,然后使用deep Q-learning强化学习的方法,来生成极端场景的参数组合。通过与随机组合以及成对组合场景参数的方法进行对比,可以看出该基于强化学习的场景生成方法可以更有效地生成极端场景,因此可提高自动驾驶感知功能的测试效率,同时可为卷积神经网络提供更多的极端场景训练数据。 相似文献
88.
针对已有注视点预测模型存在特征细节缺失、尺度单一和背景信息干扰严重导致的注视点预测精度偏低等问题,提出了一种基于超复数小波和图像空域的卷积网络融合注视点预测算法.首先,针对细节特征丢失问题,使用超复数小波变换在频域中提取图像的细节特征,与卷积网络提取的空域特征进行融合.然后,通过空洞空间金字塔池化模块,融合不同感受得到的特征图,有效解决了特征尺度单一的问题.最后,引入了残差卷积注意力模块,结合空间和通道的注意力机制,能够有效抑制背景信息的干扰,提高注视点预测精度.在SALICON数据集上,CC、sAUC和SIM评价指标下,该算法的性能达到0.884 7、0.769 3和0.778 0;在CAT2000数据集上,该算法在相应指标下的性能为0.735 5、0.870 1和0.664 5.主客观对比实验结果表明,该算法具有较好的注视点预测能力. 相似文献
89.
针对多标签文本分类任务中如何有效地提取文本特征和获取标签之间潜在的相关性问题,提出一种CNN(convolutional neural networks)结合Bi-LSTM (bi-directional long short-term memory)的模型.首先,通过CNN网络和最大池化提取文本的特征;然后,利用训练的Labeled-LDA(labeled latent dirichlet allocation)模型获取所有词与标签之间的词-标签概率信息;接着,使用Bi-LSTM网络和CNN网络提取当前预测文本中每个词的词-标签信息特征;最后,结合提取的文本特征,预测与当前文本相关联的标签集.实验结果表明,使用词-标签概率获取文本中词与标签之间的相关性信息,能够有效提升模型的F1值. 相似文献
90.
水稻病害类型多,采集过来的图像病斑交界特征复杂多变。即便同类别水稻病害在不同的生长时期,发生在叶片、茎秆、穗部等部位呈现的病斑特征也不一样,而且不同类型病害也存在相似病斑,这些都给水稻病害图像的精准识别带来了相当大的困难。采用深度卷积神经网络模型,使用数据集扩增技术,运用fine-tune方法对网络进行调参及构建,将自然场景下采集的常见8类水稻病害图像输入网络模型中进行训练和测试,在有限的图像数量下取得较高的识别精度,其中纹枯病的准确率为93%。不同于其他方法仅聚焦在水稻叶部或稻穗部,本文识别的图像是多株水稻的场景,可为水稻病害远程自动诊断提供关键技术支持。 相似文献