首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12541篇
  免费   507篇
  国内免费   893篇
系统科学   1405篇
丛书文集   428篇
教育与普及   99篇
理论与方法论   21篇
现状及发展   82篇
综合类   11906篇
  2024年   157篇
  2023年   560篇
  2022年   584篇
  2021年   668篇
  2020年   468篇
  2019年   418篇
  2018年   162篇
  2017年   186篇
  2016年   190篇
  2015年   222篇
  2014年   403篇
  2013年   437篇
  2012年   497篇
  2011年   552篇
  2010年   626篇
  2009年   723篇
  2008年   817篇
  2007年   794篇
  2006年   676篇
  2005年   644篇
  2004年   599篇
  2003年   514篇
  2002年   450篇
  2001年   482篇
  2000年   389篇
  1999年   368篇
  1998年   321篇
  1997年   275篇
  1996年   247篇
  1995年   188篇
  1994年   135篇
  1993年   92篇
  1992年   53篇
  1991年   22篇
  1990年   18篇
  1989年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
在工业领域,设备运行过程中采集的原始故障信号具有强噪声以及多工况的特点,现有的基于数据的轴承故障诊断模型的抗噪能力与泛化能力相对较弱。针对以上问题,提出一种基于频域降采样(down-sampling)和卷积神经网络(CNN)的轴承故障诊断方法 Ds-CNN。频域降采样包含最大偏移降采样和噪声横截断两个部分,可以实现样本增强,降低样本在频域的差异性,同时减弱噪声对频域信号的影响。基于频域信号建立的CNN模型能够自动提取降采样后频域信号的故障特征,并完成对轴承故障的识别分类。实验结果表明,在强噪声环境和多工况条件下,与目前常用模型相比, Ds-CNN具有更高的识别准确率。  相似文献   
62.
近些年,基于深度学习的算法和模型在各种图像分析任务中都取得了显著的成功,与常见的自然图像相比,医学图像数据集依然面临高度不平衡的问题,不平衡数据会导致特征空间里的决策边缘倾向样本多的类别,导致分类效果的下降.为了解决该问题,提出一种基于卷积神经网络考虑特征类内紧凑性的不平衡医学图像分类方法(Z-Score Compactness-based Convolutional Neural Network,ZC3NC).首先,从一个卷积神经网络的最后一层卷积层提取训练集样本与测试集样本的特征图,随后引入一个新的Z分数来度量测试集数据的特征图相对训练集每个类在特征空间上的偏离度,偏离度的度量基于类内的紧凑度,其主要关注样本的分布特性,对各类样本数量的不平衡性不敏感.最终,根据计算的偏离度,对测试集的数据进行分类.在DermaMNIST数据集上的实验表明,在不对数据和神经网络模型做任何额外增强的情况下,该方法的平衡准确率比原卷积神经网络模型平均提高11.15%,最多提高14.08%,证明提出的分类方法能有效地提高多种卷积神经网络对不平衡医学图像数据的分类性能.此外,和最先进的不平衡分类方法 Und...  相似文献   
63.
能谱式计算机断层扫描(CT)成像技术具备良好的能量分辨率,能够精确地鉴别人体组织成分,从而为后续诊断提供更准确的检测信息.随着辐射剂量的降低,能谱CT图像中噪声水平显著提高,对成像质量产生严重影响,进而降低了组织成分的解析精度.基于卷积神经网络(CNN)的去噪模型虽然可以显著降低图像中的噪声含量,但随着卷积层数的增加,深层神经网络通常会丢失高频信息.为了解决这一问题,并实现在低剂量条件下重建出高质量能谱CT图像,本文提出了一种结合通道注意力机制(CA)和持续自注意力机制(PSA)的密集连接持续注意力网络(DCPAN).两种注意力机制分别建立特征图像在通道和全局维度的联系以提高网络对图像高频分量的敏感程度,进而抑制高频细节信息的丢失.该模型所采用的密集连接结构通过特征复用的方式可以在前馈传播中保留高频信息,使用复合损失函数来监督网络的训练可以使该模型对边缘特征和组织细节信息更加敏感.实验结果表明,经该模型处理的腹部切片CT图像峰值信噪比、结构相似性指数和特征相似性指数分别达到了38.25 dB、0.993 7和0.973 2以上.相比于目前先进的CT噪声去除方法,该方法具有更好的噪声抑制...  相似文献   
64.
新生儿胆道闭锁是新生儿常见的致命疾病之一,并且该病在亚洲的发病率高于世界其他地区.新生儿胆道闭锁需要及时发现及时治疗,然而由于缺少专业的儿科医生和辅助诊疗手段,新生儿父母往往不能及时发现而错过了最佳治疗时间.因此,本文开发了一个具有实际应用价值的预诊算法,通过新生儿粪便图片预测新生儿是否患有新生儿胆道闭锁,并提醒新生儿父母及时就诊.为了让算法在应用场景下识别率更高,本文的算法基于一个真实场景下拍摄的新生儿粪图片数据集开发.首先我们设计了一个自注意力网络模型BANet(Biliary Atresia Network),将图片的浅层特征和深层特征相结合,可以得到更好的分类效果.由于拍摄自应用场景下的图片存在过暗和过曝等问题.通过分析数据集的亮度分布,我们设计了一个自动亮度调节算法解决.此外,图片中的阴影也会对识别结果造成干扰,因此我们在训练阶段增加了一种阴影数据增强方式来缓解这一问题.为验证本文提出算法的有效性,本文设计了一个和医生的对比试验.结果证明BANet在四分类的识别率、二分类的识别率、特异性和敏感性等客观评价指标上占有明显优势.本文提出的BANet能够有效利用图片中的颜色、异常点...  相似文献   
65.
云南作为泥石流受灾最严重的省份之一,每年均会遭受重大损失。为了应对这种突发性灾害,本文基于DCHNNet(dual-channel hybrid neural network)提出了一个基于双通道的改进残差结构的卷积神经网络——双通道残差网络(two-way residual network, TWRNet)。该网络能够广泛应用于泥石流沟谷图像的潜在危险性排查,实现泥石流灾害的预警。TWRNet首先采用切片的方式对数字高程(digital elevation model, DEM)数据和遥感数据分开处理,并使用改进的残差结构进行特征提取;然后将特征进行融合,并使用通道注意力机制SE(squeeze-and-excitation networks)模块进行通道增强;最后给出泥石流沟谷的分类结果。在训练过程中,本文使用了交叉熵和焦点损失构成的联合损失函数。实验结果表明,TWRNet在泥石流沟谷识别方面达到了最高89.28%的识别率和87.50%的召回率,模型性能良好。使用图像学习沟谷特征的方法来进行泥石流孕灾沟谷的识别是可行的。  相似文献   
66.
为省略船舶稳性计算中横摇阻尼以及船舶阻力等参数的复杂计算过程,提出一种采用径向基函数(RBF)神经网络对第二代完整稳性失效概率预报的方法.研究包括过度加速度、瘫船稳性以及骑浪/横甩3种失效模式.通过研究船舶相关参数对各失效模式失效概率的影响,确定采用RBF神经网络对每种失效模式进行预报时输入特征的选取,从而降低训练时长.使用训练后的网络对样本船稳性进行预报,采用均方误差和平均绝对百分比误差对预报结果进行评估.对3种失效模式预报结果的平均绝对百分比误差分别为6.49%、7.09%、5.70%,均小于10%,表明采用RBF神经网络可较为精准地对船舶稳性进行预报.  相似文献   
67.
针对人工和机械在苹果分级中存在低效、易损、准确率低等问题,提出一种基于孪生网络的苹果外观品质分级方法。该方法首先人工采集包含真实背景和不同等级的苹果图像数据集,并进行预处理操作,包括删除无关背景、0-1缩放和数据增强等;其次以卷积层、池化层和批归一化层为基础模块,搭建神经网络模型,提取苹果图像特征;最后用全连接层训练一个分类器,完成对苹果图像特征的分类,从而得到苹果外观品质对应的等级,其中模型的损失函数为对比损失。实验结果表明,构建的孪生网络模型在苹果外观品质分级中,平均分类准确率达到了97.71%,具有较好的稳定性,其用于苹果外观品质的自动分级是可行的,并为其他农产品的外观分级提供思路和参考。  相似文献   
68.
深度学习近年来在故障诊断领域受到广泛应用,但基于深度学习的故障诊断模型缺乏工程上的物理解释性,难以保证其故障诊断结果的稳定性。以轴承为例,建立了以小波时频图像为故障诊断依据的卷积神经网络模型(convolutional neural network, CNN),提出了一种基于梯度加权类激活热力图(gradient-weighted class activation map, Grad-CAM)的网络模型鲁棒性分析方法,并利用美国凯斯西储大学(Case Western Reserve University, CWRU)轴承数据集进行验证。首先,将故障直径轴承数据以不同方式混合并训练大、小多个模型。其次,利用Grad-CAM方法,建立时频区域与故障模式之间的联系。最后,利用其他工况下的轴承故障数据,以及含噪数据进行测试,并根据结果结合模型最注重的时频区域进行分析。结果表明,基于深度学习的轴承故障诊断模型在参数较少时更加注重低频区域,并能使其具有更好的鲁棒性。  相似文献   
69.
针对多标签文本分类任务中如何有效地提取文本特征和获取标签之间潜在的相关性问题,提出一种CNN(convolutional neural networks)结合Bi-LSTM (bi-directional long short-term memory)的模型.首先,通过CNN网络和最大池化提取文本的特征;然后,利用训练的Labeled-LDA(labeled latent dirichlet allocation)模型获取所有词与标签之间的词-标签概率信息;接着,使用Bi-LSTM网络和CNN网络提取当前预测文本中每个词的词-标签信息特征;最后,结合提取的文本特征,预测与当前文本相关联的标签集.实验结果表明,使用词-标签概率获取文本中词与标签之间的相关性信息,能够有效提升模型的F1值.  相似文献   
70.
针对以往模型在对点击通过率(click-through rate,CTR)进行建模预测时,存在着特征重要性学习不足、特征交互低效等问题,提出了一种增强型注意力网络预估模型,用于动态学习特征重要性和特征交互信息,模型主要由注意力层、双线性交互层和全连接神经网络层构成。注意力层的多尺度多头自注意力机制通过设置不同尺寸子空间增强特征重要性学习能力,在得到特征重要性后,进一步采用张量积双线性交互学习特征交互信息。通过对注意力的子空间尺寸大小、张量积交互形式、神经网络层数和节点个数等进行定量分析,确定模型的最佳参数。实验证明,该模型相比已有模型拥有更好的预测能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号