排序方式: 共有35条查询结果,搜索用时 15 毫秒
31.
32.
为处理核工业生产中的高质量浓度氟氨废水,采用序批式烧杯试验,分别考察了除氟脱氨顺序、混合液pH值、药剂投量等因素对反应过程的影响,探索通过生成CaF2和Mg(NH4)PO4(MAP)强化除氟脱氨的方法.结果表明,先脱氨后除氟时,Ca2+会争夺MAP中的PO3-4转化为Ca3(PO4)2,释放NH4+降低脱氨效率.先除氟后脱氨时,控制nMg2+:nPO3-4:nNH4+为1.1:1.075:1.0,混合液pH值为10.0,能实现理想的除氟脱氨.其中脱氨时投加的PO3-4会与Ca2+和F-生成溶解度很低的Ca5(PO4)3F,是强化除氟的关键.适当超投一些PO3-4可以强化脱氨,对于混合液中残存的PO3-4,可在沉淀后上清液中投加少量Ca2+生成Ca3(PO4)2进而去除. 相似文献
33.
以聚乙二醇辛基苯基醚(OP)/异辛醇(IOA)/环己烷/水所形成的反相微乳体系诱导磷酸铵镁晶体生长,并对影响微乳体系稳定性的诸多因素如水相、油相、表面活性剂、助表面活性剂、反应温度、时间进行考察.结果表明,当OP∶IOA∶环己烷∶水=1.1∶0.6∶3.0∶0.25,15℃反应15 min时所形成的微乳体系最稳定.对该体系合成的磷酸铵镁晶体进行XRD表征,结果表明,实验制得的晶体基本上是六水磷酸铵镁晶体,主要沿(111),(012),(120)面取向生长. 相似文献
34.
微电解-Fenton-MAP沉淀法处理垃圾渗滤液的试验研究 总被引:3,自引:0,他引:3
采用了微电解-Fenton氧化-磷酸铵镁(MAP)沉淀联合处理垃圾渗滤液.试验结果表明:在HRT为80 min,pH为3.5时,微电解对垃圾渗滤液CODCr的去除率达到29.9%;微电解后的出水经Fenton进一步氧化,在pH为3,H2O2的投加量为13g/L,反应时间为25 min时,其CODCr的去除率可达81.3%;微电解-Fenton氧化后的出水再经MAP沉淀法处理,在pH为9,反应时间为25 min时,NH3-N的去除率达95%.微电解-Fenton氧化-MAP沉淀组合工艺处理垃圾渗滤液,其CODCr的总去除率达86.6%,NH3-N的总去除率达99.5%. 相似文献
35.
以阻尼乳胶 IPNs为成膜物质 ,多聚磷酸铵 (APP)、三聚氰铵 (MEL )和季戊四醇 (PE)为阻燃添加剂 ,采用正交实验设计 ,找出了本体系中 APP、MEL、PE三者的最佳配比。通过改变乳液与阻燃添加剂的用量比 ,寻求阻燃剂的适宜用量。 相似文献