全文获取类型
收费全文 | 1223篇 |
免费 | 28篇 |
国内免费 | 22篇 |
专业分类
系统科学 | 1篇 |
丛书文集 | 57篇 |
教育与普及 | 15篇 |
理论与方法论 | 9篇 |
现状及发展 | 6篇 |
综合类 | 1185篇 |
出版年
2024年 | 3篇 |
2023年 | 13篇 |
2022年 | 19篇 |
2021年 | 34篇 |
2020年 | 18篇 |
2019年 | 28篇 |
2018年 | 10篇 |
2017年 | 20篇 |
2016年 | 18篇 |
2015年 | 43篇 |
2014年 | 68篇 |
2013年 | 70篇 |
2012年 | 85篇 |
2011年 | 80篇 |
2010年 | 86篇 |
2009年 | 79篇 |
2008年 | 82篇 |
2007年 | 76篇 |
2006年 | 49篇 |
2005年 | 53篇 |
2004年 | 43篇 |
2003年 | 64篇 |
2002年 | 30篇 |
2001年 | 29篇 |
2000年 | 26篇 |
1999年 | 20篇 |
1998年 | 12篇 |
1997年 | 16篇 |
1996年 | 24篇 |
1995年 | 17篇 |
1994年 | 6篇 |
1993年 | 7篇 |
1992年 | 7篇 |
1991年 | 7篇 |
1990年 | 8篇 |
1989年 | 10篇 |
1988年 | 6篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1985年 | 1篇 |
1981年 | 1篇 |
排序方式: 共有1273条查询结果,搜索用时 15 毫秒
71.
72.
利用4种化学试剂(HNO3溶液、NH3溶液、H2O2溶液与Fe(NO3)3溶液)对商业活性炭进行化学氧化改性。在含5%氧气和95%氮气的混合气体中,对改性活性炭进行热复合氧化改性。采用热重分析仪、孔隙分析仪、傅里叶红外分析(FTIR)与Boehm滴定对活性炭结构与表面基团进行测试,并利用改性活性炭对甲苯进行等温吸附实验。研究结果表明:强氧化剂预处理活性炭有助于热复合氧化改性中活性炭微孔孔容的增大;活性炭表面含氧基团由化学氧化改性和热复合氧化改性共同作用产生,热改性温度较低时,其主要由化学氧化改性生成,温度较高时,酸性基团主要来源于氧气与活性炭表面的氧化反应;酸性基团的存在能够促进活性炭吸附甲苯;控制合理的热复合氧化改性条件,既可以增加活性炭表面酸性基团,又可扩充微孔孔容,从而综合提升活性炭对甲苯的吸附能力。 相似文献
73.
生物增强活性炭技术处理微污染源水的研究 总被引:1,自引:1,他引:1
采用不同的筛选分离技术,从试验源水中分离出8株优势菌种,经过反复驯化培养,形成具有高效生物降解能力的高活性菌群.利用高活性菌群,采用人工循环固定方式形成生物增强活性炭工艺,进行其长期运行效能的试验研究.实验结果表明,生物增强活性炭工艺能够有效去除微污染源水的各类有机物,处理效能显著高于常规工艺和臭氧化工艺.源水经生物增强活性炭工艺处理后,其对氨氮的平均去除率为58.34%,对CODMn的平均去除率43.5%,对UV254的平均去除率57.4%,对TOC的平均去除率40.2%.经过色质联机检验,水中的各类微量有机物的种类和含量均有了显著的降低. 相似文献
74.
本研究以茶梗为原料,以氯化铜为活化剂,化学法制备载铜茶梗活性炭,采用响应面法优化所制备活性炭的吸附性能.在单因素实验的基础上选取浸渍比、氯化铜浓度、活化温度、活化时间为影响因子,利用Box-Behnken中心组合试验(简称BBD)进行4因素3水平的试验设计,以活性炭得率和碘吸附值作为响应值,进行响应面分析.结果表明,制备活性炭的最佳条件为:氯化铜浓度为25%、浸渍比为4、活化温度为600℃、活化时间为5 h,在此条件下,制得的活性炭的碘吸附值为453 mg/g、得率为47.09%.在优化条件下,制得的活性炭的碘吸附值和得率与预测值基本符合,所以据响应面法原理,对相关影响因素进行试验优化设计可行. 相似文献
75.
沥青氧化纤维制备活性炭纤维过程中孔隙结构的变化 总被引:3,自引:0,他引:3
以通用级沥青氧化纤维为原料经水蒸气活化制得沥青基活性炭纤维(PACF), 讨论了工艺参数对PACF的比表面积、孔结构(孔容、孔径大小及分布)的影响. 结果表明, PACF的比表面积随着活化温度的提高(850~950 ℃)而增加, 同时, 孔径变大, 孔径分布变宽;在相同最终活化温度下(900 ℃), PACF的孔径及其分布随着水蒸气通入温度的不同而发生变化. 相似文献
76.
以硫掺杂的活性炭(AC)为载体,用浸渍法制备了Bi/AC-S催化剂。用X-射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)和热重分析仪(TGA)对催化剂进行了表征。结果表明硫主要以单质的形式均匀分散在AC中。测试了几种含硫量不同的催化剂的性能,以掺杂硫的AC为载体制备的催化剂活性和重复性均有明显提高,其中含硫量为8%的催化剂Bi/AC-8%S性能较好,重复使用8次活性基本不变。进一步考察硼氢化钠用量对反应的影响。在下列反应条件下:100 m L 2 mmol.L~(-1)的4-NP溶液,0.03 g Bi/8%S-AC,n(硼氢化钠)∶n(4-NP)=30∶1,反应温度为30℃,测定反应速率常数k为0.934 min~(-1)。 相似文献
77.
采用微波湿式催化氧化 (MCWAO) 技术,以活性艳红X-3B模拟废水处理对象,以Fe-C作为MCWAO催化剂,空气作为氧化剂,探讨MCWAO技术的可行性.研究表明,在MCWAO(常压下的微波曝气湿式催化氧化)过程中脱色率和COD去除率明显高于MCWO(常压下的微波不曝气湿式催化)、CWAO(常压下的水浴曝气湿式催化氧化)、CWO(常压下的水浴不曝气湿式催化)及MCWNO(常压下的微波曝氮气湿式催化).实验结果表明Fe-C具有较高MCWAO催化活性,同时证实了空气此过程中起了重要的作用. 相似文献
78.
吸附法脱硫技术中的一个关键问题是活性炭的再生.微波作为一种新型的热处理技术,具有作用时间短、加热均匀和再生成本低等优点。本文从理论和实验两个层面研究了微波场中活性炭升温的主要影响因素。结果表明,活性炭的升温速率和温度最大值随微波输入功率增大而增大,随载气量增加而减小,而与活性炭质量关系不甚密切,实验结果与理论推导基本吻合。 相似文献
79.
为在船舶中应用余热吸附式的研究成果,选择“SITC TAISHAN”号散货船,通过船舶主机在额定工况下的能量衡算,应用当前氨-活性炭吸附式制冷系统COP的经验值,分析了该轮中央空调系统和伙食冷库采用废气锅炉蒸汽驱动的氨-活性炭吸附式制冷系统的可行性.并且,根据氨在SAC-02活性炭上的吸附平衡数据和活性炭吸附床的循环吸附特性,结合“SITC TAISHAN”轮空调机间的结构特点,规划了由废气锅炉蒸汽驱动的9床循环氨-活性炭吸附制冷系统方案,并对系统的关键部件及运行控制方案设计提出了相应措施.该研究将有助于推进船舶余热吸附式制冷技术的应用 相似文献
80.
李云霞 《中国新技术新产品精选》2011,(24):6-6
活性炭—生物膜法处理污水就是通过活性炭吸附和微生物降解的协同作用进行的,不但能较好的提高污水的处理效果,而且可使活性炭的使用周期延长,降低处理成本。活性炭吸附已广泛用于给水的净化处理,同时活性炭吸附—生物膜法用于某些工业污水后期净化处理。本文论述了活性炭的使用方法及再生方法,阐述了科学地推广和应用活性炭技术,在水处理厂有广泛前景。 相似文献