首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   800篇
  免费   14篇
  国内免费   41篇
丛书文集   32篇
教育与普及   33篇
理论与方法论   3篇
综合类   787篇
  2024年   2篇
  2023年   7篇
  2022年   13篇
  2021年   9篇
  2020年   15篇
  2019年   10篇
  2018年   8篇
  2017年   13篇
  2016年   8篇
  2015年   13篇
  2014年   25篇
  2013年   29篇
  2012年   30篇
  2011年   40篇
  2010年   36篇
  2009年   48篇
  2008年   59篇
  2007年   45篇
  2006年   56篇
  2005年   38篇
  2004年   38篇
  2003年   34篇
  2002年   30篇
  2001年   20篇
  2000年   13篇
  1999年   13篇
  1998年   29篇
  1997年   27篇
  1996年   26篇
  1995年   20篇
  1994年   14篇
  1993年   15篇
  1992年   16篇
  1991年   16篇
  1990年   19篇
  1989年   10篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1983年   1篇
排序方式: 共有855条查询结果,搜索用时 15 毫秒
841.
通过丙烯酰胺(AM)与N-苄基-N-十二烷基丙烯酰胺(BDAM)反应,采用自由基胶束共聚后加减水解法合成了双尾疏水缔合三元共聚物(AM-NaA-BDAM).用FTIR红外光谱表征了聚合物的结构,并研究了共聚物溶液的流变性能及影响因素.实验结果表明:随着共聚物浓度的增加,在临界缔合浓度以上,表观黏度迅速增加,表现出明显的...  相似文献   
842.
采用水热合成反应, 合成了系列含有多种氢键网络的Con+ 配位化合物 [Co(C4H13N3)2]2*[C6H2(COO)4]3/2*8H2O (1); [Co(phen)(H2O)3]*[C6H2(COO)4]1/2*H2O (2); [Co(C3H4N2)6](NO3)2 (3).对各化合物的单晶进行了X光衍射分析,结果表明,在每个化合物中存在多种氢键,使化合物晶体构成了无限伸延的三维网络结构,形成了广义上的超分子.经对比研究讨论了各化合物中不同类型氢键及其在结构中的作用.  相似文献   
843.
用密度泛函方法(DFT/B3LYP)在6-31G(d)和6-311++G(d,p)基组水平上逐级对(NH3)2(H2O)3团簇进行结构优化和频率计算.(NH3)2(H2O)3的初始结构取自经验势模型的大量可能构型中的51个稳定性较好的构型,最终得到了B3LYP/6-311++G(d,p)水平上的15种稳定结构,用二级微扰方法(M(o)ller-Plessett/MP2)计算了这15种结构的能量.结果发现:(NH3)2(H2O)3的五边形环状平面结构的稳定性最好;同族构型中氨分子相距越远的结构能量越低越稳定.(NH3)2(H2O)3团簇中氨分子间形成的氢键平均键长较长,其次是氨与水分子间的氢键,水分子间的氢键平均键长较短,进一步证明氨分子问的氢键较弱,氨水分子间居中,水分间的氢键最强.  相似文献   
844.
为了在原油乳化环境中利用环糊精的包合作用对疏水缔合聚合物体系性能进行调控,需要探究环糊精对疏水缔合聚合物原油乳化的调控作用。利用稳定性分析仪、光学显微镜、界面张力仪及流变仪对不同β-环糊精质量浓度条件下的疏水缔合聚合物原油乳状液的稳定性、迁移速率、微观形貌和外相体系的油/水界面张力及流变特性进行研究。结果表明:当β-环糊精质量浓度≤1.2 g/L时,随着β-环糊精质量浓度的增大,疏水缔合聚合物乳状液液滴界面膜强度逐渐增大,粒径逐渐减小,分布宽度变窄,其外相体系的油/水界面活性和黏度逐渐下降。在综合作用下,乳状液稳定性逐渐增强。当β-环糊精质量浓度1.2 g/L时,随着β-环糊精质量浓度的增大,疏水缔合聚合物乳状液液滴界面膜强度逐渐下降,粒径逐渐增大,其外相体系的油/水界面活性和黏度进一步下降,致使乳状液稳定性显著降低。  相似文献   
845.
在水热条件下合成了结构新颖的三维超分子化合物[Mn(dpp)2(H2O)4](ada)(H2O)(dpp=1,3-Di(4-pyridyl)propane,Na2ada=anthraquinone-2,6-disulfonic acid disodium salt),通过元素分析、红外光谱、X射线单晶衍射仪、热重等方法对超分子化合物的结构和性质进行了表征和测定。测定结果显示配合物晶体属三斜晶系,P-1空间群,晶包参数a=0.9790(6)nm,b=0.9892(6)nm,c=1.2728(8)nm,α=90.150(11)°,β=112.106(10)°,γ=98.997(11)°。结构分析表明配合物晶体结构中存在丰富的氢键、边和面之间C—H…π键和芳香分子面面之间的π…π堆积作用,通过这些弱相互作用使其具有三维无限网络结构,氢键、C—H…π键和π…π堆积在超分子结构构筑中起了非常重要的作用。  相似文献   
846.
在过量的I-存在的稀盐酸介质中,当有IO3-存在时,IO3-与过量的I-反应生成I3-,I3-与吖啶红、吖啶橙染料均可形成离子缔合微粒。吖啶红、吖啶橙分别在540、480 nm有较强吸收峰,在550、520 nm有较强荧光峰,吖啶红体系在605 nm处产生1个较强的共振散射(RS)峰,IO3-浓度在1.0×10-7~4.0×10-6mol/L与605nm波长处的共振散射光强度成线性关系。吖啶橙体系在560 nm处产生1个较强的共振散射(RS)峰,碘酸根浓度在2.0×10-7~1.2×10-5mol/L与560 nm波长处的共振散射光强度成线性关系。据此建立测定食盐中碘酸根的一种共振散射光谱法。采用此体系测定食盐中碘酸根,结果满意。  相似文献   
847.
疏水缔合聚合物溶液的临界缔合浓度   总被引:1,自引:0,他引:1  
为了从本质上说明缔合聚合物溶液的临界缔合浓度和其增黏机理,开展了缔合聚合物荧光光谱实验和在不同水质中的增黏性实验.结果表明:在缔合聚合物溶液中存在着两个临界缔合浓度(CAC1和CAC2),在黏浓关系研究中的临界缔合浓度是指第二临界缔合浓度(CAC2);缔合聚合物在人造淡水中的临界缔合浓度(800mg/L)远低于蒸馏水中的临界缔合浓度(2500mg/L);缔合聚合物在人造淡水中的黏度远高于其在蒸馏水中的黏度,说明缔合聚合物溶液具有较好的抗盐性;在蒸馏水中,MO4000溶液的黏度总比缔合聚合物溶液的黏度高,而在人造淡水中,缔合聚合物溶液的黏度却比MO4000溶液的高;在整个浓度范围内,聚合物MO4000在蒸馏水中的黏度总比在人造淡水中的黏度高,说明MO4000溶液的抗盐性差.  相似文献   
848.
以血管紧张素I和II共同的N端三肽分子(A_T)为模板分子,丙烯酸(AAc)为功能单体,采用DFT/B3LYP方法和6-31G(d, p)基组,模拟模板分子与功能单体分子印迹预作用体系的构型.通过研究A_T与AAc在印迹比例不同时形成复合物的几何构型、电荷转移及结合能,对A_T与AAc预作用的模式进行探讨.另外,进一步比较A_T、B_T和 C_T (B_T是血管紧张素I结构中C端的三肽分子,C_T是血管紧张素II结构中C端的三肽分子)分别与AAc形成最大印迹比例复合物的作用模式及结合能.计算结果表明:A_T与AAc通过氢键作用形成分子结构互补的复合物,当A_T与AAc印迹比例为1∶6时,电荷转移最大,氢键数目最多,复合物的结合能最低(-361.78 kJ/mol),氢键作用的位置显示精氨酸(Arginine, Arg)在印迹复合物中起重要作用;而B_T和C_T分别与AAc形成的复合物,最大印迹比例都为1∶5,结合能分别为-324.68、-284.66 kJ/mol.与B_T和C_T相比,A_T更适合作分子印迹聚合物的模板分子.  相似文献   
849.
对不同质量浓度的氯化钠-水溶液的中红外光谱(MIR)和近红外光谱(NIR)进行了研究.研究发现:随着水溶液中氯化钠质量浓度的增加,水的ν(H2O-1-A)(H2O-1-B)(H2O-2-A)和ν(H2O-2-B)的NIR出现了明显的红移现象,而水的ν(H2O-1-C)NIR出现了明显的蓝移现象;随着水溶液中氯化钠质量浓度的增加,水中氢键作用一部分增强而另一部分减弱.利用体系的二维中红外光谱(2D-MIR)和二维近红外光谱(2D-NIR)进一步分析了氯化钠对水中氢键作用部分增强和部分减弱的机理.  相似文献   
850.
采用水热合成法得到了新颖结构的配位聚合物{[Mn(C8H4O4)(phen)(H2O)2]·H2O}n.对配合物进行了单晶X-射线衍射测定.结构分析表明,晶体中存在着大量的氢键将配合物连成了1D双链结构. 对配合物的UV-VIS-NIR,IR及荧光光谱进行了测定和分析指认.同时测定了配合物的表面光电压光谱(SPS)和场诱导表面光电压光谱(FISPS).配合物的SPS在300~600 nm范围内呈现出正的光伏响应带,FISPS表明配合物呈现出一定的P-型半导体的特征.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号