首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
  国内免费   1篇
丛书文集   2篇
教育与普及   1篇
综合类   46篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1957年   1篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
21.
采用电化学方法制备了纳米氢氧化镍/过氧化聚吡咯复合膜修饰电极(Nano-Ni(OH)2/PPyox),研究了该修饰电极的电化学性质及其电催化活性.结果表明:在0.10 mol·L-1 NaOH溶液中,该修饰电极对葡萄糖具有较强的电催化活性,且具有良好的抗干扰性.在优化实验条件下,安培法检测葡萄糖的线性范围为2.0×10-7 ~5.0×10-5 mol·L-1(r =0.999 7)和5.0×10-5~1.0×10-3 mol·L-1(r=0.999 4),灵敏度分别为1017 μA·mM-1 ·cm-2和733 μA·mM-1·cm-2.  相似文献   
22.
采用微波辅助水热法制备了均匀分级的氢氧化镍(Ni(OH)2)微球,通过X射线衍射(XRD)仪、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对Ni(OH)2的组成和形貌进行了表征.Ni(OH)2微球的平均直径约1.6μm,复杂的花状结构使其具有较大的比表面积.将微球制备成Ni(OH)2修饰的玻碳电极,并将其用于0.1 mol/L NaOH溶液中尿酸(UA)的检测,该电极具有良好的电催化活性.这种传感器表现出较宽的线性范围(0.1~1.5 mmol/L)和高灵敏度(475.71μA·L/(mmol·cm2)),且有较低的检出限(1.8μmol/L).利用电化学测试对内源性干扰物进行检验,发现Ni(OH)2微球修饰电极对UA的选择性较好.结果表明:Ni(OH)2微球在研发无酶尿酸传感器方面具有重要的应用潜力.  相似文献   
23.
对球型Ni(OH)2表面包覆处理后的表面物理性能和电化学性能进行研究.采用沉淀转化法制备纳米氢氧化镍,以化学沉积法在其表面包覆不同含量的CoOOH,通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电技术、循环伏安测试进行组织和性能研究.结果表明:包覆不同质量分数CoOOH的球型氢氧化镍仍为β相结构,2.5%的包覆层形成了均匀的导电网络,使活性物质利用率显著提高;表面覆钴质量分数为2.5%时,氢氧化镍具有优良的电化学循环稳定性,300次循环后比容量仅降低15%;包覆质量分数为2.5%的CoOOH的氢氧化镍电极反应的可逆性和充电效率明显提高,并强化镍电极的析氧极化.  相似文献   
24.
以乙醇为溶剂,氨水作为沉淀剂,制备出了氢氧化镍纳米片.用X射线衍射仪和场发射电子显微镜(FESEM)表征了产物的形貌和结构,结果表明所得产物为厚约30 nm直径200~400 nm的纳米薄片.将所制备的氢氧化镍纳米片制成电极,用循环伏安、恒电流充放电测试和交流阻抗等方法测试表明,氢氧化镍纳米片具有良好的超电容性质,其单电极比容量最高达到1 338 F.g-1.  相似文献   
25.
我们利用水热法合成了Ni(SO4)0.3(OH)1.4纳米线。采用场发射扫描电子显微镜(FE-SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱(FTIR)和能量散射谱(EDS)等现代分析技术表征了样品的形貌和结构。FE-SEM结果表明:在SO24-离子存在下,获得了长达几μm和宽20~30 nm的纳米线。XRD结果证实其结构是Ni(SO4)0.3(OH)1.4相。我们讨论了纳米线可能的形成机理。  相似文献   
26.
首先通过多周期的电化学循环伏安处理法在Ni金属丝(Niw)上原位生长Ni(OH)2/NiOOH活性层作为电化学氧化葡萄糖的电极材料,然后通过逐个周期改变葡萄糖浓度(1~15 mmol/L)的循环伏安法,研究了葡萄糖在电极上的氧化机理及动力学特征,详细分析了不同电位下氧化电流与葡萄糖浓度的数学关系。结果表明:葡萄糖的电化学氧化机理是基于NiOOH对葡萄糖的化学氧化和电化学氧化再生NiOOH的耦合过程;0.16~0.24 V为葡萄糖氧化电化学控制区;在0.24~0.36 V间,响应电流随葡萄糖浓度呈等阶梯式增加,为典型的扩散控制。进一步研究表明所制备的Ni(OH)2/NiOOH/Niw电极在葡萄糖定量分析时展现了较好的线性关系(10 μmol/L~5.5 mmol/L,R2=0.9999),灵敏度达到62.7 μA/(mmol·L-1),且对模拟腹膜透析液、血液中常见共存物展现了良好的抗干扰能力。  相似文献   
27.
一种新的制备超微粉末的方法——沉淀转化法   总被引:35,自引:0,他引:35  
超微粒子是指颗粒尺寸大于原子簇(cluster)而小于微粉(fine powder),一般在1~100nm之间。当小粒子尺寸进入纳米量级时,显示出了普通大颗粒材料不具有的特性,即小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。目前伴随着超微粉研究与应用,其制备新方法不断出现,概括起来分3大类:固相法、液相法和气相法。本方法是在综合各种液相法的基础上,发展的一种新的制备超微粉的技术——沉淀转化法。其理论依据是根据难溶化合物溶度积(k_(sn))的不同,通过改变沉淀转化剂的浓度、转化温度以及借助表面活性剂来控制颗粒生长和防止颗粒团聚,获得单分散超微粒子。该法具有实验设备简单,原料成本低、工艺流程短、操作方便、产率高等优点。利用该法我们已经成功的制备出了Ni(OH)_2,NiO,CuO,La(OH)_3,ZnO,Co(OH)_2和Co_3O_4等氢氧化物和氧化物超微粉。 超微粉制备过程如下:(1)氧化铜超微粉:准确称取一定量的Cu(NO_3)_2·3H_2O(A.R.)配制成溶液,与化学计量一定浓度的无水碳酸钠溶液反应,生成浅蓝色碱式碳酸铜沉淀,磁搅拌至无气泡产生,加入一定量的表面活性剂吐温-80,继续搅拌0.5h,再加入一定浓度化学计量的碳酸钠溶液,一定温度加热搅拌1h,过滤并用蒸馏水洗涤三次以上,得到黑色氧化铜超微粉末;(2)氢氧化  相似文献   
28.
水电解制氢的同时,阳极电解生成副产品氢氧化镍,该工艺制氢电耗约为2.5 kW.h。研究了电解质浓度、氢氧化镍沉淀浓度等对电解电压和电流效率的影响,并对影响氢氧化镍振实密度的主要因素包括电流密度、温度、搅拌速度、滤饼含水量、烘干温度等进行了分析,从而得出了最佳实验条件。X射线衍射、原子力显微镜等表征结果表明,制得的氢氧化镍为β型,形状呈椭球形,粒度分布比较均匀。  相似文献   
29.
利用电化学沉积法制备三维石墨烯/氢氧化镍纳米Ni(OH)2/3DGR复合材料,通过扫描电镜对样品进行微观形貌表征;在1.0 mo L/L KOH溶液中利用循环伏安和恒电流充放电等方法对纳米复合材料修饰电极进行电化学性能测试.在2 m A/cm2的电流密度下Ni(OH)2/3DGR的比电容达到43.70 m F/cm2;1000次循环充放电测试表明该复合材料具有较长的使用寿命和稳定性,比电容保持率达到79.3%.因此三维石墨烯/纳米氢氧化镍复合材料可以做为一种很好的超级电容器材料.  相似文献   
30.
采用水热法合成Ni(OH)_2-VS_2纳米复合材料,通过X射线衍射(XRD)、扫描电子显微镜(SEM)等对复合材料物相及形貌进行表征.将所得的复合材料用作超级电容器电极材料,通过循环伏安法、恒电流充放电法以及交流阻抗法对Ni(OH)_2-VS_2纳米复合材料的电化学性能进行评价.同时探讨了Ni(OH)2与VS2的不同质量比对复合材料电化学性能的影响.结果表明:Ni(OH)2与VS2的质量比为5∶1时所制备的Ni(OH)_2-VS_2纳米复合材料具有更优异的电化学性能.在电流密度为1A/g时,比电容最高可达到4021F/g,且在电流密度为5A/g下进行500次充放电测试,电容保持率仍在80%以上.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号