首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18574篇
  免费   632篇
  国内免费   798篇
系统科学   553篇
丛书文集   619篇
教育与普及   226篇
理论与方法论   57篇
现状及发展   178篇
综合类   18371篇
  2024年   193篇
  2023年   633篇
  2022年   565篇
  2021年   690篇
  2020年   541篇
  2019年   501篇
  2018年   286篇
  2017年   438篇
  2016年   466篇
  2015年   651篇
  2014年   1039篇
  2013年   920篇
  2012年   1055篇
  2011年   1044篇
  2010年   957篇
  2009年   1091篇
  2008年   1246篇
  2007年   941篇
  2006年   752篇
  2005年   708篇
  2004年   615篇
  2003年   573篇
  2002年   596篇
  2001年   512篇
  2000年   461篇
  1999年   352篇
  1998年   326篇
  1997年   326篇
  1996年   277篇
  1995年   215篇
  1994年   207篇
  1993年   151篇
  1992年   150篇
  1991年   106篇
  1990年   99篇
  1989年   111篇
  1988年   85篇
  1987年   55篇
  1986年   30篇
  1985年   13篇
  1984年   5篇
  1983年   4篇
  1982年   1篇
  1981年   6篇
  1980年   1篇
  1978年   3篇
  1962年   2篇
  1957年   4篇
  1947年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
为解决装配式节段梁菱形湿接缝抗剪性能弱、接缝界面易剥离、耐久性差等诸多工程实际问题,设计了一种“干”字形超高性能混凝土(UHPC)湿接缝,采用ABAQUS有限元软件分析接缝构造形式、接缝配筋率和接缝结合面粗糙度对UHPC湿接缝界面力学性能影响规律.研究结果表明:基于Traction-Separation结合面的有限元模型可较好模拟节段梁湿接缝界面力学性能;提出的“干”字形接缝界面力学性能显著优于菱形接缝,界面切向剪应力集中面积远小于菱形接缝,正弯矩受拉区钢筋和UHPC剥离位移最大可减小约83.7%;“干”字形湿接缝界面黏结正应力并不随着配筋率增加而同比例提高,配筋率对界面切向剪应力影响呈双峰效应;湿接缝配筋率建议取4.8%;配筋率和界面粗糙度对湿接缝界面法向剥离位移影响较小,可忽略不计.  相似文献   
92.
提出一种波转子为锥形结构的斜流式气波制冷机,能够提供一定的离心效果.建立了从0°(轴流式)至90°(径流式)不同锥角的波转子数值模型,通过Ansys Fluent模拟其增压和制冷性能.在同样的工况和结构参数下,斜流式气波制冷机具有比轴流式更高的循环压差,比径流式更低的轴功消耗,其制冷效果高于二者且随锥角增大先增大后减小,在锥角为12°时达到最优,制冷温降和等熵效率相较轴流式分别高9.59℃和13.8%,相较径流式分别高20.48℃和30.9%.然后固定锥角12°,探究一定范围内转速和压比对性能的影响.结果表明,增压效果随转速增大而提升,制冷效果在转速2 500 r/min时最优;压比增大会使循环压差降低,但制冷温降和等熵效率均有所提升.  相似文献   
93.
采用Greene-Aldrich指数型近似方法近似表达径向方程非线性离心项,利用P-NU方法研究了含修正Yukawa-Kratzar势场的Schr?dinger方程束缚态解析解问题,得到了归一化的束缚态波函数和相应能量本征值方程,数值求解能量本征值方程并和真实值数据进行了对比。  相似文献   
94.
针对特厚煤层大采高综放开采区段煤柱合理留设的问题,以同发东周窑煤矿为工程背景,采用弹性力学极限平衡法求得煤柱合理的理论留设宽度为20.87~24.08 m,利用工程类比法得到该煤矿上区段采空区煤柱侧严重塑性破坏区宽度约为4 m.运用FLAC3D数值分析软件对四种煤柱留设方案下煤柱内部的垂直应力、塑性破坏特征及巷道围岩的变形量进行剖析,以确定该煤矿区段最合理的煤柱留设宽度.结果显示:窄煤柱受大采高综放开采的特厚煤层和下区段回采双向侧向支承压力叠加的影响容易失稳变形破碎.综合考虑,最终确定该煤矿区段煤柱合理留设宽度为24 m.  相似文献   
95.
通过疏水絮凝实验、原子力显微镜分析和数值模拟计算等方法,系统研究了微细粒黑钨矿的疏水聚团形成机制.结果表明:pH为8.0~8.5时,油酸钠诱导黑钨矿表面疏水并产生疏水絮凝行为,微细粒黑钨矿疏水聚团D50与油酸钠的质量浓度和搅拌强度正相关;油酸钠体系中黑钨矿颗粒间具有较强的黏附力,疏水作用力是疏水聚团形成的主要贡献成分;搅拌装置中形成的强湍流流场环境有助于矿物颗粒的相互接触与能量传递,增加颗粒碰撞黏附概率;在流场高剪切力和油酸钠诱导疏水力共同作用下促进了微细粒黑钨矿形成大而稳固的聚团,与常规浮选相比,疏水絮凝浮选WO3回收率提高了12.04%.  相似文献   
96.
突风一直以来都是危及飞行安全的重要气象要素之一,造成国民经济和人民生命财产的损失。利用常规观测资料、ADWR-X多普勒气象雷达资料和ERA5逐小时再分析资料,对四川盆地西部一次爆发性大风过程中风场的精细化特征、成因及对飞行的影响进行诊断和模拟研究,结果表明:此次大风过程风速增长快,爆发性强。地面风速自午后开始出现4次波动,且每一次波动期间风速峰值呈增加趋势,时间呈缩短趋势。由于第4次波动风速呈爆发性增加,最大瞬时风达到了16.1 m/s,地面风速脉动值超过5 m/s,致使跑道区域内流场的不稳定性增加,起降跑道侧风值超过了中小型飞行器的起降标准。高空动量下传对本次大风过程中风速的爆发性增加起主导作用。中层强偏南气流与低层偏北急流配和,中层辐合以及低层辐散下沉的垂直结构使得低层下沉气流异常强劲,将900~850 hPa的大风核快速向地面传导。通过天气研究与预报(weather research and forecasting, WRF)模式四重嵌套对本次过程进行模拟,表明WRF对盆地西部冷空气补充南下引起的在风速演变趋势、风速最大值和大风影响时段的风向有较好的模拟能力,对飞行起飞和着陆有一...  相似文献   
97.
钢结构吊车梁在工业建筑中被广泛应用,应力集中的存在导致几何不连续位置在复杂应力下服役.借助有限元法分析吊车梁应力-应变状态,确定危险点位置,并提取应力、应变分量;以应变能密度作为损伤参量并以最大平面为临界面,基于能量准则建立临界面位置数值计算方法,结合有限元结果给出吊车梁临界面位置;考虑吊车梁在非对称载荷下服役,借助Goodman方程进行平均应力修正,并结合Q355D钢近似S-N曲线计算疲劳寿命.该方法考虑了应力集中处多轴应力对疲劳损伤的影响,可以为复杂应力下几何不连续钢构件的疲劳寿命评估提供新方法.  相似文献   
98.
密集城市区近接基坑工程易引发超大直径(>15 m)盾构隧道变形、结构开裂及渗漏水.当前超大直径盾构隧道建设处于起步阶段,基坑影响下隧道变形响应规律不明,合理的影响分区匮乏.本文采用有限元软件建立超大直径隧道旁侧基坑开挖的三维有限元模型,分析超大直径隧道的结构变形响应机制,并探讨隧道埋深、隧道-基坑间距、基坑开挖深度等因素影响规律.结果表明,基坑开挖引发地层朝向基坑的“鼓肚子”水平位移和“勺子”状竖向位移;与小直径隧道相比,超大直径盾构隧道表现出较小的纵向变形和较为显著的横向变形;隧道变形随隧道-旁侧基坑围护结构距离增大而减小、随埋深增大先增大后减小、随基坑开挖深度的增大而增大.通过基坑开挖深度归一化后,隧道最大变形与隧道-基坑间距可用指数函数高精度拟合.提出归一化后的影响分区图,为实际工程超大直径隧道结构保护提供重要的参考.  相似文献   
99.
本文展示了一个计算泥沙输运过程的三维数值模型,此模型的特点在于较准确地计入凝絮及河床侵蚀对于泥沙沉淀过程的影响,关于凝絮及侵蚀的定量计算模型已为大量实验所验证,且是首次被结合运用于三维输运计算。文中对于海湾区域的泥沙输运进行了数值研究,第一闪通过定量计算评实了所谓最大浑浊区的存在,并研究了影响其形成及强度的几个因素,这些计算结果不仅评实了数值模型的有效性,而且显示了其在泥沙输运研究方面的作用与潜力  相似文献   
100.
为研究斜拉荷载倾斜角度和叶片埋深对螺旋桩极限承载力的影响,基于ABAQUS软件构建了砂土中螺旋桩的有限元模型,通过螺旋桩水平承载机理砂箱试验与竖向拉拔试验数据,对模型的准确性和可行性进行验证。设置4组不同叶片埋深的螺旋桩模型,分别施加不同角度的斜拉荷载,探讨了砂土地基中螺旋桩的承载性能与斜拉角度、叶片埋深的相关性。结果表明:砂土中螺旋桩的极限承载力随着斜拉角度的增大不断减小;当斜拉角度小于30°时,螺旋桩极限承载力与斜拉角度的关系曲线近似呈线性;螺旋桩极限承载力存在一个临界埋深比,当埋深比大于等于4时,承载力不随埋深比的增大而变化。推导了深埋状态下螺旋桩受斜拉荷载作用的极限承载力公式,经验证该公式能较好反映螺旋桩极限承载力随斜拉角度增大而逐渐下降的规律。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号