全文获取类型
收费全文 | 584篇 |
免费 | 10篇 |
专业分类
系统科学 | 120篇 |
丛书文集 | 8篇 |
理论与方法论 | 1篇 |
现状及发展 | 271篇 |
综合类 | 129篇 |
自然研究 | 65篇 |
出版年
2021年 | 1篇 |
2020年 | 11篇 |
2019年 | 26篇 |
2018年 | 16篇 |
2017年 | 21篇 |
2016年 | 22篇 |
2015年 | 30篇 |
2014年 | 33篇 |
2013年 | 39篇 |
2012年 | 97篇 |
2011年 | 23篇 |
2010年 | 33篇 |
2009年 | 35篇 |
2008年 | 32篇 |
2007年 | 26篇 |
2006年 | 21篇 |
2005年 | 27篇 |
2004年 | 15篇 |
2003年 | 16篇 |
2002年 | 16篇 |
2001年 | 21篇 |
2000年 | 9篇 |
1999年 | 17篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1988年 | 2篇 |
排序方式: 共有594条查询结果,搜索用时 15 毫秒
21.
In this paper, we investigate the performance of a class of M‐estimators for both symmetric and asymmetric conditional heteroscedastic models in the prediction of value‐at‐risk. The class of estimators includes the least absolute deviation (LAD), Huber's, Cauchy and B‐estimator, as well as the well‐known quasi maximum likelihood estimator (QMLE). We use a wide range of summary statistics to compare both the in‐sample and out‐of‐sample VaR estimates of three well‐known stock indices. Our empirical study suggests that in general Cauchy, Huber and B‐estimator have better performance in predicting one‐step‐ahead VaR than the commonly used QMLE. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
22.
Dag Kolsrud 《Journal of forecasting》2007,26(3):171-188
I propose principles and methods for the construction of a time‐simultaneous prediction band for a univariate time series. The methods are entirely based on a learning sample of time trajectories, and make no parametric assumption about its distribution. Hence, the methods are general and widely applicable. The expected coverage probability of a band can be estimated by a bootstrap procedure. The estimate is likely to be less than the nominal level. Expected lack of coverage can be compensated for by increasing the coverage in the learning sample. Applications to simulated and empirical data illustrate the methods. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
23.
This paper stresses the restrictive nature of the standard unit root/cointegration assumptions and examines a more general type of time heterogeneity, which might characterize a number of economic variables, and which results in parameter time dependence and misleading statistical inference. We show that in such cases ‘operational’ models cannot be obtained, and the estimation of time‐varying parameter models becomes necessary. For instance, economic processes subject to endemic change can only be adequately modelled in a state space form. This is a very important point, because unstable models will break down when used for forecasting purposes. We also discuss a new test for the null of cointegration developed by Quintos and Phillips (1993), which is based on parameter constancy in cointegrating regressions. Finally, we point out that, if it is possible to condition on a subset of superexogenous variables, parameter instability can be handled by estimating a restricted system. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
24.
A physically based model for ground‐level ozone forecasting is evaluated for Santiago, Chile. The model predicts the daily peak ozone concentration, with the daily rise of air temperature as input variable; weekends and rainy days appear as interventions. This model was used to analyse historical data, using the Linear Transfer Function/Finite Impulse Response (LTF/FIR) formalism; the Simultaneous Transfer Function (STF) method was used to analyse several monitoring stations together. Model evaluation showed a good forecasting performance across stations—for low and high ozone impacts—with power of detection (POD) values between 70 and 100%, Heidke's Skill Scores between 40% and 70% and low false alarm rates (FAR). The model consistently outperforms a pure persistence forecast. Model performance was not sensitive to different implementation options. The model performance degrades for two‐ and three‐days ahead forecast, but is still acceptable for the purpose of developing an environmental warning system at Santiago. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
25.
We present a mixed‐frequency model for daily forecasts of euro area inflation. The model combines a monthly index of core inflation with daily data from financial markets; estimates are carried out with the MIDAS regression approach. The forecasting ability of the model in real time is compared with that of standard VARs and of daily quotes of economic derivatives on euro area inflation. We find that the inclusion of daily variables helps to reduce forecast errors with respect to models that consider only monthly variables. The mixed‐frequency model also displays superior predictive performance with respect to forecasts solely based on economic derivatives. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
26.
This paper proposes a new evaluation framework for interval forecasts. Our model‐free test can be used to evaluate interval forecasts and high‐density regions, potentially discontinuous and/or asymmetric. Using a simple J‐statistic, based on the moments defined by the orthonormal polynomials associated with the binomial distribution, this new approach presents many advantages. First, its implementation is extremely easy. Second, it allows for a separate test for unconditional coverage, independence and conditional coverage hypotheses. Third, Monte Carlo simulations show that for realistic sample sizes our GMM test has good small‐sample properties. These results are corroborated by an empirical application on SP500 and Nikkei stock market indexes. It confirms that using this GMM test leads to major consequences for the ex post evaluation of interval forecasts produced by linear versus nonlinear models. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
27.
Massimiliano Marcellino 《Journal of forecasting》2008,27(4):305-340
Predicting the future evolution of GDP growth and inflation is a central concern in economics. Forecasts are typically produced either from economic theory‐based models or from simple linear time series models. While a time series model can provide a reasonable benchmark to evaluate the value added of economic theory relative to the pure explanatory power of the past behavior of the variable, recent developments in time series analysis suggest that more sophisticated time series models could provide more serious benchmarks for economic models. In this paper we evaluate whether these complicated time series models can outperform standard linear models for forecasting GDP growth and inflation. We consider a large variety of models and evaluation criteria, using a bootstrap algorithm to evaluate the statistical significance of our results. Our main conclusion is that in general linear time series models can hardly be beaten if they are carefully specified. However, we also identify some important cases where the adoption of a more complicated benchmark can alter the conclusions of economic analyses about the driving forces of GDP growth and inflation. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
28.
Michael McAleer Juan‐Angel Jimenez‐Martin Teodosio Pérez‐Amaral 《Journal of forecasting》2010,29(7):617-634
Under the Basel II Accord, banks and other authorized deposit‐taking institutions (ADIs) have to communicate their daily risk estimates to the monetary authorities at the beginning of the trading day, using a variety of value‐at‐risk (VaR) models to measure risk. Sometimes the risk estimates communicated using these models are too high, thereby leading to large capital requirements and high capital costs. At other times, the risk estimates are too low, leading to excessive violations, so that realized losses are above the estimated risk. In this paper we analyze the profit‐maximizing problem of an ADI subject to capital requirements under the Basel II Accord as ADIs have to choose an optimal VaR reporting strategy that minimizes daily capital charges. Accordingly, we suggest a dynamic communication and forecasting strategy that responds to violations in a discrete and instantaneous manner, while adapting more slowly in periods of no violations. We apply the proposed strategy to Standard & Poor's 500 Index and show there can be substantial savings in daily capital charges, while restricting the number of violations to within the Basel II penalty limits. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
29.
We study the performance of recently developed linear regression models for interval data when it comes to forecasting the uncertainty surrounding future stock returns. These interval data models use easy‐to‐compute daily return intervals during the modeling, estimation and forecasting stage. They have to stand up to comparable point‐data models of the well‐known capital asset pricing model type—which employ single daily returns based on successive closing prices and might allow for GARCH effects—in a comprehensive out‐of‐sample forecasting competition. The latter comprises roughly 1000 daily observations on all 30 stocks that constitute the DAX, Germany's main stock index, for a period covering both the calm market phase before and the more turbulent times during the recent financial crisis. The interval data models clearly outperform simple random walk benchmarks as well as the point‐data competitors in the great majority of cases. This result does not only hold when one‐day‐ahead forecasts of the conditional variance are considered, but is even more evident when the focus is on forecasting the width or the exact location of the next day's return interval. Regression models based on interval arithmetic thus prove to be a promising alternative to established point‐data volatility forecasting tools. Copyright ©2015 John Wiley & Sons, Ltd. 相似文献
30.
Hidden Markov models are often used to model daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time‐varying behavior have not been thoroughly examined. This paper presents an adaptive estimation approach that allows for the parameters of the estimated models to be time varying. It is shown that a two‐state Gaussian hidden Markov model with time‐varying parameters is able to reproduce the long memory of squared daily returns that was previously believed to be the most difficult fact to reproduce with a hidden Markov model. Capturing the time‐varying behavior of the parameters also leads to improved one‐step density forecasts. Finally, it is shown that the forecasting performance of the estimated models can be further improved using local smoothing to forecast the parameter variations. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献