首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   4篇
  国内免费   20篇
丛书文集   4篇
教育与普及   2篇
现状及发展   127篇
综合类   195篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   9篇
  2014年   4篇
  2013年   5篇
  2012年   10篇
  2011年   9篇
  2010年   6篇
  2009年   15篇
  2008年   13篇
  2007年   16篇
  2006年   25篇
  2005年   29篇
  2004年   19篇
  2003年   17篇
  2002年   18篇
  2001年   15篇
  2000年   9篇
  1999年   15篇
  1998年   10篇
  1997年   4篇
  1996年   13篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   7篇
  1988年   3篇
  1986年   3篇
  1985年   8篇
  1984年   2篇
排序方式: 共有328条查询结果,搜索用时 437 毫秒
301.
302.
After the transfection of -1,3-fucosyltransferase (FucT)-VII cDNA into H7721 human hepatocarcinoma cells, the protein expression of some cyclins, cyclin-dependent kinases (CDKs) and cyclin-dependent kinase inhibitors (CDIs) p16INK4 and p21waf1/Cip1 were unchanged. However, CDI p27Kip1 protein, both the total amount and the amount that bound to CDK2, but not its mRNA, was significantly reduced. The de-inhibited CDK2 stimulated the phosphorylation of retinoblastoma (Rb) protein and facilitated the G1/S transition and growth rate of the cells. The decrease of p27Kip1 protein, the increase of CDK2 activity and Rb phosphorylation, as well as the cell growth and percentage of S phase cells were correlated to the increased amount of cell surface sialyl Lewis X (SLex) antigen in cells with different -1,3-FucT-VII expression. The reduction in p27Kip1 and the difference in its expression among different transfected cells were blocked by the SLex antibody KM93 in a dose-dependent manner, indicating that p27Kip1 expression was influenced by -1,3-FucT-VII and its product SLex. The MEK/MAPK signaling pathway was more important than the PI-3K pathway in the regulation of p27Kip1 expression.Received 5 August 2004; received after revision 25 October 2004; accepted 11 November 2005  相似文献   
303.
304.
Receptor tyrosine kinases play essential roles in cell proliferation and differentiation. We have recently shown that peptides corresponding to the transmembrane domains of the epidermal growth factor (EGF) and ErbB2 receptors inhibit their corresponding receptor activation in cancer cell lines. We extend this observation to cells transfected with chimeric insulin receptors where the transmembrane domain has been replaced by that of the EGF receptor or a mutated Erb2 domain. Peptides corresponding to the transmembrane domains of the EGF receptor and ErbB2 are able to inhibit specifically the autophosphorylation of insulin receptors with the corresponding domain. This inhibitory effect is correlated with the propensity of the different transmembrane domains to self-associate in a genetic reporter assay. Thus, our data strengthen the notion that transmembrane domains are involved in erbB receptor activation, and that these receptors can be modulated by inhibiting proteinprotein interactions within the membrane.Received 25 May 2005; received after revision 13 July 2005; accepted 22 July 2005  相似文献   
305.
Membrane fission is essential in various intracellular dissociative transport steps. The molecular mechanisms by which endocytic vesicles detach from the plasma membrane are being rapidly elucidated. Much less is known about the fission mechanisms operating at Golgi tubular networks; these include the Golgi transport and sorting stations, the trans-Golgi and cis-Golgi networks, where the geometry and physical properties of the membranes differ from those at the cell surface. Here we discuss the lipid and protein machineries that have so far been related to the fission process, with emphasis on those acting in the Golgi complex. Received 10 May 2002; received after revision 20 June 2002; accepted 26 June 2002 RID="*" ID="*"Corresponding author.  相似文献   
306.
307.
308.
309.
310.
Protein kinase catalyzes the transfer of the γ-phosphoryl group from ATP to the hydroxyl groups o fprotein side chains, which plays critical roles in signal transduction pathways by transmitting extracellular signals across the plasma membrane and nuclear membrane to the destination sites in the cytoplasm and the nucleus. Protein kinase C (PKC) is a superfamily of phospholipid-dependent Ser/Thr kinase. There are at least 12 isozymes in PKC family.They are distributed in different tissues and play different roles in physiological processes. On account of their concern with a variety of pathophysiologic states, such as cancer,inflammatory conditions, autoimmune disorder, and cardiac diseases, the inhibitors, which can inhibit the activity of PKC and the interaction of cytokine with receptor, and interfere signal transduction pathway, may be candidates of therapeutic drugs. Therefore, intense efforts have been made to develop specific protein kinase inhibitors as biological tools and therapeutic agents. This article reviews the recent development of some of PKC inhibitors based on their interaction with different conserved domains and different inhibition mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号