首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2281篇
  免费   71篇
  国内免费   150篇
系统科学   18篇
丛书文集   75篇
教育与普及   157篇
理论与方法论   14篇
现状及发展   37篇
综合类   2201篇
  2024年   15篇
  2023年   57篇
  2022年   60篇
  2021年   60篇
  2020年   46篇
  2019年   40篇
  2018年   25篇
  2017年   39篇
  2016年   29篇
  2015年   56篇
  2014年   92篇
  2013年   58篇
  2012年   78篇
  2011年   93篇
  2010年   89篇
  2009年   97篇
  2008年   89篇
  2007年   91篇
  2006年   77篇
  2005年   81篇
  2004年   72篇
  2003年   80篇
  2002年   102篇
  2001年   87篇
  2000年   67篇
  1999年   94篇
  1998年   75篇
  1997年   70篇
  1996年   89篇
  1995年   68篇
  1994年   64篇
  1993年   59篇
  1992年   67篇
  1991年   67篇
  1990年   36篇
  1989年   56篇
  1988年   22篇
  1987年   34篇
  1986年   14篇
  1985年   5篇
  1984年   1篇
  1980年   1篇
排序方式: 共有2502条查询结果,搜索用时 31 毫秒
871.
Q&P钢配分过程中的组织演变   总被引:1,自引:0,他引:1  
利用扫描电镜、透射电镜、X射线衍射和电子探针等研究了0.2C--1.51Si--1.84Mn钢在配分阶段组织的演变情况.配分温度为400℃时,碳在10 s时就可以完成配分,得到残余奥氏体最大体积分数为13.4%.随着配分时间的增长,钢中马氏体发生回火现象,奥氏体发生分解,强度、延伸率降低.当配分时间达到1000 s时,屈服强度、延伸率突然升高.分析认为马氏体回火带来的塑性提高抵消了残余奥氏体量减少引起的塑性降低,并且由于渗碳体和碳化物的析出,变形时阻碍位错的运动,从而提高了屈服强度.通过电子探针分析说明配分阶段发生了碳的扩散,随着配分时间的增长,发生了渗碳体和碳化物的析出,降低了残余奥氏体中碳的含量.  相似文献   
872.
通过采用激光共聚焦扫描显微镜对AISI304奥氏体不锈钢的凝固过程进行了原位动态观察研究.发现当冷却速率为0.05℃.s-1时,奥氏体不锈钢以胞状晶方式凝固,其凝固模式为FA模式,即δ铁素体相先从液相中形核并长大,γ相在1 448.9℃时通过与液相发生包晶反应(L+δ→γ)在δ铁素体相界形成,当温度降到1 431.3℃时液相消失,δ铁素体相通过固态相变转变为γ相,富Cr贫Ni的残留铁素体位于胞状晶之间.当冷却速率为3.0℃.s-1时,奥氏体不锈钢以枝晶方式生长,冷却到1346.4℃时包晶反应在液相与δ铁素体相界之间进行,其残留铁素体位于枝晶干,与冷却速率为0.05℃.s-1时相比,其残留铁素体的数量增多,残留铁素体富Cr贫Ni的程度减轻.  相似文献   
873.
研究了0.21C--1.43Si--1.35Mn钢在两相区及完全奥氏体区采用QP(Quenching and Partitioning)工艺加热后的微观组织与力学性能.结果表明:两相区加热可获得马氏体、残余奥氏体和铁素体组织,钢的抗拉强度为1 013 MPa,延伸率为25%,强塑积为25 655 MPa.%;完全奥氏体区加热可获得马氏体和残余奥氏体组织,钢的抗拉强度为1 257 MPa,延伸率为17%,强塑积为21 454 MPa.%;QP钢中的马氏体主要为板条状,伴有大量位错,并且发现有少量孪晶马氏体,分析认为由配分过程后的淬火过程转变而来;通过QP工艺可得到体积分数高达10.67%的残余奥氏体,分布在板条马氏体间,呈薄膜状.  相似文献   
874.
采用光学显微镜、背散射电子图像、X射线衍射、电子探针、差示扫描量热法和透射电子显微镜研究了Ni2Ta合金的微观组织结构和相变特性.结果表明:Ni2Ta合金在经过1 200 C保温4h的热处理后,主要由大量Ni2Ta相和少量Ni2Ta析出相组成,其中Ni2Ta相有单斜和四方两种结构.单斜Ni2Ta相为典型的细小板条状马氏体形状,其板条宽度为0.1~0.3μm,且存在以(001)晶面为孪品面的典型孪品结构.Ni3Ta合金在升温和降温过程中存在单斜Ni2Ta相和四方Ni3Ta相的可逆相变,相变开始温度分别约为310和245℃.另外,在升温过程中还存在单斜Ni3Ta相向正交Ni3Ta相的转变,其相变开始温度约为310℃,但降温过程中并不存在由正交Ni3Ta相到单斜Ni3Ta相的逆转变.  相似文献   
875.
采用水浴加热石蜡—膨胀石墨复合相变材料热膨胀压力试验装置,测试了约束条件下纯石蜡以及膨胀石墨质量分数分别为5%和10%的石蜡—膨胀石墨复合相变材料的膨胀压力.实验表明膨胀石墨的加入明显改善了石蜡—膨胀石墨复合相变材料的导热性能,使复合相变材料中石蜡的相变提前发生.膨胀石墨质量分数为5%和10%时,相变时间范围较纯石蜡相变时间分别缩短了30%和40%.膨胀石墨质量分数为5%时,石蜡—膨胀石墨复合相变材料产生的最大膨胀压力比纯石蜡相变产生的最大膨胀压力提高了25%,最大膨胀压力可达87.3 MPa.将石蜡—膨胀石墨复合相变材料用作驱动材料是切实可行的.  相似文献   
876.
基于密度泛函理论和密度泛函微扰理论的第一性原理计算了R相和M1相VO2的电子能带结构和声子色散关系.计算发现:R相VO2的金属性主要来自于未满的t2g轨道中能量最低的3条轨道,当温度低于340 K时,由于V原子链的二聚化和扭曲作用使M1相中的2条t2g轨道降至费米能级以下,从而使M1相表现出半导体特性;在VO2的声子色散谱中沿ΓM和ΓZ方向出现了明显的声子软模,导致这一软模出现的原因是晶体中的电-声相互作用;因此,电-声相互作用是导致VO2金属-绝缘结构相变的直接原因.  相似文献   
877.
 采用真空蒸发沉积方法在Al2O3衬底上生长CuPc薄膜,用X射线衍射、扫描电子显微镜、紫外-可见光分光光度计多种测试手段表征薄膜的结构,研究不同沉积速率、不同膜厚和衬底温度对CuPc薄膜结构的影响.研究结果表明:CuPc薄膜的晶粒尺寸随沉积速率的增大而减小,薄膜越厚,结晶度越高,CuPc薄膜退火温度约为250℃时发生相变,由原来的亚稳态α-CuPc晶型结构转变为稳定的β-CuPc晶型结构.
  相似文献   
878.
寒区隧道土体中的水分迁移和相变是冻害问题的主要诱因.基于混合物理论,建立考虑水分迁移和水冰相变的联合求解微分方程对水热耦合问题进行求解,并使用 COMSOL Multi-physics 软件进行模块开发,实现渗流-温度耦合数值模拟,进而将模拟结果与土柱冻结实验的结果进行对比,证明水热耦合模型是正确的.最后以西藏自治区米林隧道为例,对温度场、水分场模拟分析并对是否考虑水分迁移的温度场进行对比.结果表明:随着时间的增加,隧道顶部边界气温由-0.82℃降低到-9℃,隧道内部边界温度由-0.74℃ 降低到-11.11℃,并在3月份隧道温度回升;含冰量峰值出现在1月份,在3月份含冰量开始下降.同时,未考虑水分迁移的温度场中热传导速度较快,证明相变潜热对隧道中温度场的分布影响远大于液态水靠重力迁移造成的热对流传热.研究成果直观反映富水寒区隧道的冻害发生过程,具有一定的参考价值.  相似文献   
879.
氟化在改善缺钙型羟基磷灰石的热稳定性的同时,可以保持材料原有的良好生物相容性和生物活性.在同等化学沉淀条件下,通过X射线衍射(XRD)表征,在氟加入量不同时,研究合成产物及其热稳定性.不添加氟,合成产物主要为二水合磷酸氢钙(DCPD),并含极少量羟基磷灰石(HA);加入少量氟,合成产物为DCPD和缺钙型氟化羟基磷灰石(D-FHA)混合物;随着氟含量提高,样品04F的合成产物中DCPD消失,仅剩D-FHA,可见氟在这一合成反应过程中促进了DCPD向D-FHA的转变.对合成产物进行煅烧的结果表明:加热温度为200℃时,只有无氟和02F这两种样品发生脱羟基反应,在氟含量继续增加时,该反应消失;加热温度为600℃时,04F样品中的D-FHA开始分解为β-Ca_3(PO_4)_2和β-Ca_2P_2O_7两种磷酸钙,继续增加氟含量时发生这一分解的温度升高,可见D-FHA的稳定性提高.  相似文献   
880.
当夏季温度超过30℃时,口红会因高温发生融化,甚至断裂。为了防止口红在夏季因高温融化,利用3D打印技术制备了光敏树脂的口红外壳,选用十二醇和月桂酸作为中间蓄冷介质,采用加热混合法制备了十二醇–月桂酸相变蓄冷材料。利用瞬态平面热源法导热仪、差示扫描量热仪和蓄冷试验对相变蓄冷材料的导热系数、相变温度、相变潜热和蓄冷特性进行了研究。结果表明:十二醇–月桂酸相变材料的导热系数为0.225 8 W/(m·K),相变温度为18.6℃,相变潜热为179.1 kJ/kg,适合作为口红外壳的相变蓄冷剂。在30℃的高温天气条件下,蓄冷口红外壳能够持续蓄冷大约3 h,可以确保口红不会因高温融化,能够延长口红的使用寿命。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号