首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11425篇
  免费   411篇
  国内免费   617篇
系统科学   144篇
丛书文集   501篇
教育与普及   834篇
理论与方法论   156篇
现状及发展   202篇
综合类   10616篇
  2024年   107篇
  2023年   290篇
  2022年   312篇
  2021年   389篇
  2020年   288篇
  2019年   284篇
  2018年   147篇
  2017年   194篇
  2016年   263篇
  2015年   311篇
  2014年   705篇
  2013年   546篇
  2012年   604篇
  2011年   687篇
  2010年   676篇
  2009年   805篇
  2008年   832篇
  2007年   748篇
  2006年   682篇
  2005年   709篇
  2004年   557篇
  2003年   525篇
  2002年   446篇
  2001年   379篇
  2000年   250篇
  1999年   151篇
  1998年   144篇
  1997年   122篇
  1996年   99篇
  1995年   46篇
  1994年   72篇
  1993年   34篇
  1992年   20篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   7篇
  1987年   1篇
  1986年   1篇
  1948年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
《天津科技》2005,32(1):63-63
纳米电子(nanoelectronics)在现今科技不断追求体积缩小且运算快的设备之际,被许多专家视为突破下一代科技的主要关键技术,纳米电子是一项在现有完整架构的微电子(microelectronics)产业下的全新技术领域。  相似文献   
72.
针对时间序列数据预测过程中可能面对高维或超高维的预测变量,同时考虑变量的时序特征及预测的非同步性,提出用于时序数据预测的非同步尺度主成分分析方法。首先构建单个预测变量和被预测变量的非同步线性回归,通过可决系数选取单变量的最佳滞后阶数,并将回归系数赋权与相应的预测变量得到赋权预测变量,并通过主成分分析对赋权预测变量降维,即非同步尺度主成分分析。将该方法用于消费者物价指数增长率的预测,结果表明经非同步尺度主成分分析降维的预测精度高于传统降维预测的方法。  相似文献   
73.
高压隔膜泵单向阀运行工况复杂,运行时产生的振动信号具有非线性、非平稳特性,导致信号特征提取困难,故障状态难以识别.为了提取单向阀运行状态的非线性动力学特征,提升故障诊断模型的识别精度和泛化能力,提出了一种基于多尺度排列熵(Multi-scale Permutation Entropy,MPE)和正则化随机向量函数链接(Random Vector Functional Link,RVFL)网络的单向阀故障诊断方法.首先,对工况下采集的单向阀振动信号进行变分模态分解(Variational Mode Decomposition,VMD)获得既定的若干本征模态函数(Intrinsic Mode Function,IMF)分量;然后,计算IMF分量的多尺度排列熵,构建表征单向阀运行状态的特征值向量;最后,基于运行状态的特征值向量,建立正则化随机RVFL的故障诊断模型,并应用于单向阀的运行状态监测与识别.实验结果表明,构建的故障诊断模型能够精确地识别单向阀的故障类型,准确率达到98.89%.  相似文献   
74.
为了在提高低照图像的亮度和对比度的同时,保持图像的色彩自然度,提出了多尺度自适应Gamma矫正的低照图像增强方法.鉴于HSI颜色空间的明度分量Ⅰ决定着图像的明暗程度,以及明度分量的多尺度特性,首先,将图像转换到HSI颜色空间,对明度分量Ⅰ进行多尺度Retinex分解;然后,对分解得到的多尺度光照图像分别进行自适应的Gamma矫正,其中Gamma指数自适应于暗区像素的占比,鲁棒地改善光照图像的光照分布,经Retinex反变换得到增强的多尺度明度分量;最后,将增强的多尺度明度分量的线性融合作为增强的明度分量Ⅰ’,与色相分量H和饱和度分量S重组,得到最后的增强图像.实验结果表明,相对于部分最新提出的现有方法,新方法的PSNR和SSIM值分别高出1.19 dB和1.8%以上,具有更好的增强效果和鲁棒性,增强图像的视觉效果更适宜,对比度更高.  相似文献   
75.
文章采用可逆加成-断裂链转移聚合(reversible addition-fragmentation chain transfer polymerization, RAFT)方法,聚合得到以疏水性共聚物链段作为内核,亲水性共聚物链段作为支链的两亲性聚合物纳米颗粒,与氯化钆(Ⅲ)六水合物进行螯合反应后合成了一种新型的支化结构聚合物磁共振成像(magnetic resonance imaging, MRI)纳米造影剂P(DO3A-Gd3+)。安全性试验结果表明,P(DO3A-Gd3+)具有良好的生物安全性。体外MRI测试结果表明:P(DO3A-Gd3+)的弛豫率为5.30 (mmol/L)-1·s-1,高于临床造影剂Magnevist(2.94 (mmol/L)-1·s-1); P(DO3A-Gd3+)具有显著的MRI造影增强效果。研究结果表明P(DO3A-Gd3+)是一种优异的MRI造影剂,具...  相似文献   
76.
红背桂树叶提取物绿色合成铁纳米颗粒(Fe NPs)在水环境修复领域具有很高的应用潜力。但由于Fe NPs存在团聚、易氧化等不稳定因素,在去除污染物时抑制了反应活性。为了解决这一问题,使用一步法制备了高岭土负载Fe NPs (K-Fe NPs),并系统地检测了其对孔雀石绿和Pb2+混合污染物的去除反应活性。采用X射线衍射(XRD)和傅里叶红外光谱(FTIR)对Fe NPs、高岭土和K-Fe NPs进行表征和分析。3种材料对比实验结果表明,K-Fe NPs对单独的孔雀石绿和Pb2+的去除效率(99.10%和93.41%)优于Fe NPs(93.67%和85.33%)和高岭土(32.54%和12.50%)。此外,K-Fe NPs经过4次重复循环对孔雀石绿和Pb2+的去除率仍分别为74.02%和55.48%。结果表明,K-Fe NPs在染料和重金属离子复合污染修复领域具有一定应用前景。  相似文献   
77.
建立了考虑碳纳米管(Carbon Nanotubes,CNTs)尺度效应的宏观功能梯度碳纳米管增强复合材料(Functionally Graded Carbon Nanotubes Reinforced Composites,FG-CNTRCs)圆柱壳自由振动特性的理论模型. 综合考虑CNTs的取向和尺度效应,基于Eshelby-Mori-Tanaka(EMT)方法和非局部理论建立了宏观CNTRCs的非局部EMT本构模型. 基于Kirchhoff-Love圆柱壳假设,采用Hamilton原理推导了热环境中visco-Pasternak基体中FG-CNTRCs圆柱壳的自由振动控制方程,利用Navier法得到两端简支圆柱壳的固有频率,并与文献中结果进行对比,验证了模型和方法的正确性. 分析了非局部参数、CNTs的体积分数和分布方式、圆柱壳的长厚比、环境温度以及地基参数等对简支FG-CNTRCs圆柱壳自由振动特性的影响. 研究发现,考虑CNTs的尺度效应后会降低FG-CNTRCs圆柱壳的抗弯刚度,环境温度对简支FG-X-CNTRCs圆柱壳固有频率虚部的影响随CNTs体积分数的增大而增大,且长厚比和地基的阻尼参数对虚部的影响有耦合作用.  相似文献   
78.
先进电磁波吸收材料对薄厚度、轻重量、宽频带、强吸收等综合性能提出了更高要求。在此,我们提出了一种具有梯度电磁特性的新型层状台阶吸波超材料。通过在环氧树脂中分散不同含量的羰基铁和碳纤维来获得不同复介电常数和复磁导率的材料。通过对各层材料的电磁参数和几何尺寸实现宽频吸波性能的优化。在相同厚度和相同各层材料电磁参数条件下,平板层状结构在2.0–40 GHz范围内只能实现小于?6 dB的反射损耗,而本文设计的层状台阶超材料实现了小于?10 dB的电磁波吸收。此外,层状台阶超材料在11.2–21.4 GHz和28.5–40 GHz的频率范围反射损耗小于?15 dB。根据实验和仿真结果,本文讨论了多尺度结构协同效应所引起的多种电磁波吸收机制。因此,将多层结构和周期性台阶结构结结合获得新型的梯度吸收超材料,可为宽频电磁吸波材料的设计和研制提供新的思路。  相似文献   
79.
SAG法合成钛酸铅纳米晶粒的工艺和结构研究李永祥刘泽吴冲若(东南大学电子工程系,南京210096)PbTiO3是应用广泛的铁电和光电材料之-,研究PbTiO3纳米晶粒的合成技术和电学性能对基础研究和新型复合功能材料研究都有重要意义.作者曾采用Sol...  相似文献   
80.
用分形插值函数构造正交多尺度分析   总被引:3,自引:0,他引:3  
提出了一种用多个分形插值函数构造正交多尺度分析的方法,然后给出了用多个分形插值函数构造L2(R)上的正交多尺度分析的一个充分条件.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号