首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2377篇
  免费   36篇
  国内免费   156篇
系统科学   65篇
丛书文集   103篇
教育与普及   14篇
理论与方法论   5篇
现状及发展   331篇
综合类   2050篇
自然研究   1篇
  2024年   3篇
  2023年   7篇
  2022年   8篇
  2021年   20篇
  2020年   20篇
  2019年   16篇
  2018年   13篇
  2017年   22篇
  2016年   23篇
  2015年   49篇
  2014年   98篇
  2013年   71篇
  2012年   105篇
  2011年   121篇
  2010年   83篇
  2009年   244篇
  2008年   279篇
  2007年   204篇
  2006年   173篇
  2005年   148篇
  2004年   113篇
  2003年   117篇
  2002年   108篇
  2001年   77篇
  2000年   77篇
  1999年   49篇
  1998年   48篇
  1997年   36篇
  1996年   44篇
  1995年   20篇
  1994年   37篇
  1993年   26篇
  1992年   21篇
  1991年   19篇
  1990年   21篇
  1989年   25篇
  1988年   11篇
  1987年   9篇
  1986年   3篇
  1955年   1篇
排序方式: 共有2569条查询结果,搜索用时 0 毫秒
111.
Bitter peptides and bitter taste receptors   总被引:1,自引:0,他引:1  
Bitter peptides are a structurally diverse group of oligopeptides often generated in fermented, aged, and hydrolyzed food products that make them unfavorable for consumption. Humans perceive bitterness by a repertoire of 25 human bitter receptors, termed T2Rs. Knowledge of the structural features of bitter receptors and of the factors that stimulate bitter receptors will aid in understanding the mechanism responsible for bitter taste perception. This article reviews the current knowledge regarding structural features of bitter peptides and bitter taste receptors. Received 24 November 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   
112.
Studies on identification, derivation and characterization of human stem cells in the last decade have led to high expectations in the field of regenerative medicine. Although it is clear that for successful stem cell-based therapy several obstacles have to be overcome, other opportunities lay ahead for the use of human stem cells. A more immediate application would be the development of human models for cell-type specific differentiation and disease in vitro. Cardiomyocytes can be generated from stem cells, which have been shown to follow similar molecular events of cardiac development in vivo. Furthermore, several monogenic cardiovascular diseases have been described, for which in vitro models in stem cells could be generated. Here, we will discuss the potential of human embryonic stem cells, cardiac stem cells and the recently described induced pluripotent stem cells as models for cardiac differentiation and disease. Received 07 August 2008; received after revision 26 September 2008; accepted 03 October 2008  相似文献   
113.
Apolipoprotein M (apoM) is a novel apolipoprotein found mainly in high-density lipoproteins (HDL). Its function is yet to be defined. ApoM (25 kDa) has a typical lipocalin ?-barrel fold and a hydrophobic pocket. Retinoids bind apoM but with low affinity and may not be the natural ligands. ApoM retains its signal peptide, which serves as a hydrophobic anchor to the lipoproteins. This prevents apoM from being lost in the urine. Approximately 5% of HDL carries an apoM molecule. ApoM in plasma (1 μM) correlates strongly with both low-density lipoprotein (LDL) and HDL cholesterol, suggesting a link to cholesterol metabolism. However, in casecontrol studies, apoM levels in patients with coronary heart disease (CHD) and controls were similar, suggesting apoM levels not to affect the risk for CHD in humans. Experiments in transgenic mice suggested apoM to have antiatherogenic properties; possible mechanisms include increased formation of pre-? HDL, enhanced cholesterol mobilization from foam cells, and increased antioxidant properties. Received 28 November 2008; received after revision 15 December 2008; accepted 16 December 2008  相似文献   
114.
Reticulons (RTNs) are membrane-spanning proteins sharing a typical domain named reticulon homology domain (RHD). RTN genes have been identified in all eukaryotic organisms examined so far, and the corresponding proteins have been found predominantly associated to the endoplasmic reticulum membranes. In animal and yeast, in which knowledge of the protein family is more advanced, RTNs are involved in numerous cellular processes such as apoptosis, cell division and intracellular trafficking. Up to now, a little attention has been paid to their plant counterparts, i.e., RTNLBs. In this review, we summarize the data available for RTNLB proteins and, using the data obtained with animal and yeast models, several functions for RTNLBs in plant cells are proposed and discussed. Received 01 July 2008; received after revision 08 September 2008; accepted 30 September 2008  相似文献   
115.
Cytoplasmic translation is under sophisticated control but how cells adapt its rate to constitutive loss of mitochondrial oxidative phosphorylation is unknown. Here we show that translation is repressed in cells with the pathogenic A3243G mtDNA mutation or in mtDNA-less ρ0 cells by at least two distinct pathways, one transiently targeting elongation factor eEF-2 and the other initiation factor eIF-2α constitutively. Under conditions of exponential cell growth and mammalian target of rapamycin (mTOR) activation, eEF-2 becomes transiently phosphorylated by an AMP-activated protein kinase (AMPK)-dependent pathway, especially high in mutant cells. Independent of AMPK and mTOR, eIF-2α is constitutively phosphorylated in mutant cells, likely a signature of endoplasmic reticulum (ER)-stress response induced by the loss of oxidative phosphorylation. While the AMPK/eEF-2K/eEF-2 pathway appears to function in adaptation to physiological fluctuations in ATP levels in the mutant cells, the ER stress signified by constitutive protein synthesis inhibition through eIF-2α-mediated repression of translation initiation may have pathobiochemical consequences. Received 29 October 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   
116.
Methylation of lysine residues of histones is associated with functionally distinct regions of chromatin, and, therefore, is an important epigenetic mark. Over the past few years, several enzymes that catalyze this covalent modification on different lysine residues of histones have been discovered. Intriguingly, histone lysine methylation has also been shown to be cross-regulated by histone ubiquitination or the enzymes that catalyze this modification. These covalent modifications and their cross-talks play important roles in regulation of gene expression, heterochromatin formation, genome stability, and cancer. Thus, there has been a very rapid progress within past several years towards elucidating the molecular basis of histone lysine methylation and ubiquitination, and their aberrations in human diseases. Here, we discuss these covalent modifications with their cross-regulation and roles in controlling gene expression and stability. Received 24 September 2008; received after revision 21 November 2008; accepted 28 November 2008  相似文献   
117.
Little is known about the fate of machinery proteins of the protein quality control and endoplasmic reticulum(ER)-associated degradation (ERAD). We investigated the degradation of the ERAD component EDEM1, which directs overexpressed misfolded glycoproteins to degradation. Endogenous EDEM1 was studied since EDEM1 overexpression not only resulted in inappropriate occurrence throughout the ER but also caused cytotoxic effects. Proteasome inhibitors had no effect on the clearance of endogenous EDEM1 in non-starved cells. However, EDEM1 could be detected by immunocytochemistry in autophagosomes and biochemically in LC3 immuno-purified autophagosomes. Furthermore, influencing the lysosome-autophagy pathway by vinblastine or pepstatin A/E64d and inhibiting autophagosome formation by 3-methyladenine or ATGs short interfering RNA knockdown stabilized EDEM1. Autophagic degradation involved removal of cytosolic Triton X-100-insoluble deglycosylated EDEM1, but not of EDEM1-containing ER cisternae. Our studies demonstrate that endogenous EDEM1 in cells not stressed by the expression of a transgenic misfolded protein reaches the cytosol and is degraded by basal autophagy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 15 January 2009; received after revision 16 February 2009; accepted 17 February 2009 V. Le Fourn, K. Gaplovska-Kysela: These authors equally contributed to this work.  相似文献   
118.
The Williams-Beuren syndrome is a genomic disorder (prevalence: 1/7,500 to 1/20,000), caused by a hemizygous contiguous gene deletion on chromosome 7q11.23. Typical symptoms comprise supravalvular aortic stenosis, mental retardation, overfriendliness and visuospatial impairment. The common deletion sizes range of 1.5–1.8 mega base pairs (Mb), encompassing app. 28 genes. For a few genes, a genotype-phenotype correlation has been established. The best-explored gene within this region is the elastin gene; its haploinsufficiency causes arterial stenosis. The region of the Williams-Beuren syndrome consists of a single copy gene region (~1.2 Mb) flanked by repetitive sequences – Low Copy Repeats (LCR). The deletions arise as a consequence of misalignment of these repetitive sequences during meiosis and a following unequal crossing over due to high similarity of LCRs. This review presents an overview of the Williams-Beuren syndrome region considering the genomic assembly, chromosomal rearrangements and their mechanisms (i.e. deletions, duplications, inversions) and evolutionary and historical aspects. Received 11 July 2008; received after revision 15 October 2008; accepted 16 October 2008  相似文献   
119.
The elucidation of assembly pathways of multi-subunit membrane proteins is of growing interest in structural biology. In this study, we provide an analysis of the assembly of the asymmetrically oriented PsaC subunit on the pseudo C2-symmetric Photosystem I core. Based on a comparison of the differences in the NMR solution structure of unbound PsaC with that of the X-ray crystal structure of bound PsaC, and on a detailed analysis of the PsaC binding site surrounding the FX iron-sulfur cluster, two models can be envisioned for what are likely the last steps in the assembly of Photosystem I. Here, we dissect both models and attempt to address heretofore unrecognized issues by proposing a mechanism that includes a thermodynamic perspective. Experimental strategies to verify the models are proposed. In closing, the evolutionary aspects of the assembly process will be considered, with special reference to the structural arrangement of the PsaC binding surface. Received 22 October 2008; received after revision 17 November 2008; accepted 05 December 2008  相似文献   
120.
The unique and evolutionary highly conserved major vault protein (MVP) is the main component of ubiquitous, large cellular ribonucleoparticles termed vaults. The 100 kDa MVP represents more than 70% of the vault mass which contains two additional proteins, the vault poly (ADP-ribose) polymerase (vPARP) and the telomerase-associated protein 1 (TEP1), as well as several short untranslated RNAs (vRNA). Vaults are almost ubiquitously expressed and, besides chemotherapy resistance, have been implicated in the regulation of several cellular processes including transport mechanisms, signal transmissions and immune responses. Despite a growing amount of data from diverse species and systems, the definition of precise vault functions is still highly complex and challenging. Here we review the current knowledge on MVP and vaults with focus on regulatory functions in intracellular signal transduction and immune defence. Received 27 June 2008; received after revision 25 July 2008; accepted 30 July 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号