首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   37篇
  国内免费   17篇
丛书文集   10篇
教育与普及   5篇
理论与方法论   1篇
综合类   492篇
  2024年   1篇
  2022年   6篇
  2021年   10篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   21篇
  2016年   8篇
  2015年   10篇
  2014年   14篇
  2013年   9篇
  2012年   19篇
  2011年   15篇
  2010年   16篇
  2009年   18篇
  2008年   19篇
  2007年   19篇
  2006年   16篇
  2005年   25篇
  2004年   22篇
  2003年   14篇
  2002年   26篇
  2001年   19篇
  2000年   14篇
  1999年   7篇
  1998年   16篇
  1997年   10篇
  1996年   19篇
  1995年   16篇
  1994年   18篇
  1993年   11篇
  1992年   13篇
  1991年   18篇
  1990年   7篇
  1989年   12篇
  1988年   7篇
  1987年   4篇
  1986年   9篇
  1955年   1篇
排序方式: 共有508条查询结果,搜索用时 843 毫秒
251.
The metallic films surrounding a synthetic diamond formed under high-pressure and high-temperature (HPHT) in the presence of Fe-based and Ni-based catalysts were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was showed that the carbide was the primary carbon source for the nucleation and growth of diamond. Based on the EET (empirical electron theory in solid and molecules) theory, the valence electron structure of interface between carbide (Fe3C, Ni3C, (Fe, Ni)3C) and diamond was calculated using the bonding length difference (BLD) method. The boundary criterion of Thomas-Fermi-Dirac-Cheng (TFDC): “the electron density being equal on the contacting surfaces of atoms” was applied to analyze the valence structure of carbide-diamond interface. The result based on the calculation valance electron structure is in good accordance with the experimental result. This study is very helpful to reveal the catalytic mechanism of diamond nucleation and growth and design the new catalyst for diamond synthesis.  相似文献   
252.
为了解决热磨片服役过程中出现的磨损失效问题,对高碳热磨片在淬火回火过程中的显微组织变化及耐磨性进行了研究。以高铬高碳铸铁为研究对象,利用金相显微镜、X射线衍射仪、硬度计、磨损试验机等对经过热处理后的样品进行组织观察和性能测试。实验结果表明:样品原始组织由初生(Cr,Fe)7C3、共晶(Cr,Fe)7C3、马氏体及奥氏体组成;低温回火时,碳化物变化不明显,基体为回火马氏体+奥氏体;随着回火温度的升高,碳化物逐渐增加,回火马氏体逐渐减少;当温度超过450 ℃时,回火马氏体消失,基体组织转变为铁素体+奥氏体;硬度随回火温度的升高呈现先略微减小、然后增大再减小的趋势,在450 ℃时硬度最高,为63.4HRC;与铸态相比,均匀分布的碳化物耐磨性提高了2.53倍。研究淬火回火工艺对高碳热磨片显微组织及耐磨性的影响,为提高高碳热磨片的耐磨性、延长其使用寿命提供了理论依据。  相似文献   
253.
通过正交设计实验优化得到了高碳高铬钢、含铬灰铸铁的最优成分;采用卧式悬臂离心实验机对高碳高铬钢/含铬灰铸铁进行离心复合·在复合成功的基础上,利用金相显微镜对不同实验条件下的复合界面进行了对比、分析·结果表明:经离心复合铸造,高碳高铬钢/含铬灰铸铁复合界面为结合紧密的复合层;复合试样经1080℃保温1h,水淬+500℃回火1h处理后,复合界面碳化物扩散更充分,但对复合界面宽度没有影响;浇注温度提高,复合界面宽度增加,当高碳高铬钢液浇注温度由1460℃提高到1480℃时,复合界面宽度增加了100μm·  相似文献   
254.
刘宏勋  徐海 《科学技术与工程》2020,20(36):14777-14790
随着“坚强智能电网”建设的不断深化以及“泛在电力物联网”概念的提出,硅基电力电子器件以及电力电子化装置正面临着新的挑战。以碳化硅基为代表的宽禁带功率半导体器件,因其高耐压、高耐温、高频开关等优良特性,在中高压领域前景广阔。其典型应用之一即因硅基器件耐压水平有限而难有突破的电力电子变压器。电力电子变压器除了能实现传统工频交流变压器的电压变换和电气隔离功能之外,还在故障切除、功率调控、分布式可再生能源接入等方面有独特优势。本文首先对碳化硅电力电子器件的研究与发展作简要概述,而后对电力电子变压器的发展进行了简单梳理。最后,重点介绍了几种典型的应用碳化硅器件的电力电子变压器,以便相关研究的进一步开展。  相似文献   
255.
楔横轧成型电机轴的组织与性能   总被引:1,自引:1,他引:0  
本文研究了35MnVN钢经不同温度加热,进行楔横轧成型电机轴空冷后的组织与性能。这种成型电机轴具有非常细小的铁素体—珠光体组织,其σ_b为870~900MPa,σ_s即(σ_(0.2))为759~796MPa,σ_k为69~134J/cm~2。  相似文献   
256.
采用测定韧-脆转变的方法,研究了碳化物析出、晶粒尺寸及轧制条件对超纯铁素体不锈钢 26Cr-1Mo 脆性的影响。结果表明:晶粒尺寸及轧后的冷却条件对该钢的DBTT 均有明显影响。轧后空冷的脆性是由于 M_(23)C_6 的析出以及变形组织和 475℃脆性综合作用的结果。  相似文献   
257.
钒含量对PD3钢碳化钒析出的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了弄清钒在珠光体组织转变中的作用和沉淀析出的规律,通过电化学萃取分析结合透射电子显微镜观察研究了钒含量对PD3钢中碳化钒析出行为的影响。研究结果表明:PD3钢的铁素体和渗碳体中固溶钒的饱和溶解度分别为0.09%和0.23%左右;当钢中钒含量低于0.21%时,钒主要以固溶形式存在,只有极少量的碳化钒质点无序析出;当钢中钒含量增加,超过饱和溶解度后,多余的钒则主要以碳化钒的形式析出;当钢中钒含量高于0.21%,达到0.33%时,碳化钒将以无序状态和“相关沉淀”两种方式大量析出。  相似文献   
258.
通过比较高碳高锰钢液淬和变质处理的组织,分析了高锰钢中碳化物的形成及其形态,指出碳化物的形成、形态和分布与冷却速度和微量元素的分布有密切关系.Si-Ca变质可以改善碳化物形态和分布,其原因是变质剂的加入,降低了微量活性元素硫在碳化物及奥氏体晶界上的分布含量.同时St-Ca的变质也抑制了固态碳化物的针状脱溶析出,使碳化物保持了团粒状,提高了高锰钢的性能.  相似文献   
259.
奥氏体化状态和钒对珠光体型钢轨钢韧性的影响   总被引:3,自引:0,他引:3  
以重轨钢PD2和PD3为对象,重点研究了热轧态和重新热处理状态珠光体的韧性。研究结果表明,奥氏体状态(晶粒大小、成分均匀化及碳化物溶入或析出程度等)及珠光体的形态和片层间距是影响珠光体冲击韧性的主要组织因素。奥氏体晶粒的细化、珠光体片层的细化、奥氏体成分的均匀化及强碳化物形成元素在奥氏体状态的固溶化是珠光体钢韧化的基本途径。  相似文献   
260.
所研究的碳化硅纤维具有多晶结构,主要含有结晶态的SiC,石墨态的碳和无定形的SiO_2。来自石墨的两个拉曼(Raman)峰(1600cm~(-1)和 1350cm~(-1))和来自 SiC的拉曼峰(835cm~(-1))的位置都时纤维形变役感。1600 cm~(-1)和1350cm~(-1)峰位置的偏移与纤维拉伸应变有近似线性关系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号