全文获取类型
收费全文 | 31228篇 |
免费 | 75篇 |
国内免费 | 93篇 |
专业分类
系统科学 | 259篇 |
丛书文集 | 562篇 |
教育与普及 | 72篇 |
理论与方法论 | 99篇 |
现状及发展 | 13531篇 |
研究方法 | 1214篇 |
综合类 | 15157篇 |
自然研究 | 502篇 |
出版年
2013年 | 206篇 |
2012年 | 410篇 |
2011年 | 909篇 |
2010年 | 171篇 |
2008年 | 470篇 |
2007年 | 536篇 |
2006年 | 537篇 |
2005年 | 541篇 |
2004年 | 537篇 |
2003年 | 542篇 |
2002年 | 461篇 |
2001年 | 938篇 |
2000年 | 931篇 |
1999年 | 579篇 |
1992年 | 563篇 |
1991年 | 477篇 |
1990年 | 531篇 |
1989年 | 454篇 |
1988年 | 496篇 |
1987年 | 515篇 |
1986年 | 445篇 |
1985年 | 650篇 |
1984年 | 472篇 |
1983年 | 403篇 |
1982年 | 365篇 |
1981年 | 359篇 |
1980年 | 464篇 |
1979年 | 974篇 |
1978年 | 797篇 |
1977年 | 758篇 |
1976年 | 667篇 |
1975年 | 735篇 |
1974年 | 899篇 |
1973年 | 812篇 |
1972年 | 857篇 |
1971年 | 972篇 |
1970年 | 1265篇 |
1969年 | 1006篇 |
1968年 | 937篇 |
1967年 | 933篇 |
1966年 | 845篇 |
1965年 | 588篇 |
1964年 | 151篇 |
1959年 | 352篇 |
1958年 | 568篇 |
1957年 | 421篇 |
1956年 | 372篇 |
1955年 | 315篇 |
1954年 | 326篇 |
1948年 | 246篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
321.
Harakalova M van Harssel JJ Terhal PA van Lieshout S Duran K Renkens I Amor DJ Wilson LC Kirk EP Turner CL Shears D Garcia-Minaur S Lees MM Ross A Venselaar H Vriend G Takanari H Rook MB van der Heyden MA Asselbergs FW Breur HM Swinkels ME Scurr IJ Smithson SF Knoers NV van der Smagt JJ Nijman IJ Kloosterman WP van Haelst MM van Haaften G Cuppen E 《Nature genetics》2012,44(7):793-796
Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome. 相似文献
322.
Panizzi JR Becker-Heck A Castleman VH Al-Mutairi DA Liu Y Loges NT Pathak N Austin-Tse C Sheridan E Schmidts M Olbrich H Werner C Häffner K Hellman N Chodhari R Gupta A Kramer-Zucker A Olale F Burdine RD Schier AF O'Callaghan C Chung EM Reinhardt R Mitchison HM King SM Omran H Drummond IA 《Nature genetics》2012,44(6):714-719
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smh(tn222)) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated. 相似文献
323.
Ong CK Subimerb C Pairojkul C Wongkham S Cutcutache I Yu W McPherson JR Allen GE Ng CC Wong BH Myint SS Rajasegaran V Heng HL Gan A Zang ZJ Wu Y Wu J Lee MH Huang D Ong P Chan-on W Cao Y Qian CN Lim KH Ooi A Dykema K Furge K Kukongviriyapan V Sripa B Wongkham C Yongvanit P Futreal PA Bhudhisawasdi V Rozen S Tan P Teh BT 《Nature genetics》2012,44(6):690-693
Opisthorchis viverrini-related cholangiocarcinoma (CCA), a fatal bile duct cancer, is a major public health concern in areas endemic for this parasite. We report here whole-exome sequencing of eight O. viverrini-related tumors and matched normal tissue. We identified and validated 206 somatic mutations in 187 genes using Sanger sequencing and selected 15 genes for mutation prevalence screening in an additional 46 individuals with CCA (cases). In addition to the known cancer-related genes TP53 (mutated in 44.4% of cases), KRAS (16.7%) and SMAD4 (16.7%), we identified somatic mutations in 10 newly implicated genes in 14.8-3.7% of cases. These included inactivating mutations in MLL3 (in 14.8% of cases), ROBO2 (9.3%), RNF43 (9.3%) and PEG3 (5.6%), and activating mutations in the GNAS oncogene (9.3%). These genes have functions that can be broadly grouped into three biological classes: (i) deactivation of histone modifiers, (ii) activation of G protein signaling and (iii) loss of genome stability. This study provides insight into the mutational landscape contributing to O. viverrini-related CCA. 相似文献
324.
Wan J Yourshaw M Mamsa H Rudnik-Schöneborn S Menezes MP Hong JE Leong DW Senderek J Salman MS Chitayat D Seeman P von Moers A Graul-Neumann L Kornberg AJ Castro-Gago M Sobrido MJ Sanefuji M Shieh PB Salamon N Kim RC Vinters HV Chen Z Zerres K Ryan MM Nelson SF Jen JC 《Nature genetics》2012,44(6):704-708
RNA exosomes are multi-subunit complexes conserved throughout evolution and are emerging as the major cellular machinery for processing, surveillance and turnover of a diverse spectrum of coding and noncoding RNA substrates essential for viability. By exome sequencing, we discovered recessive mutations in EXOSC3 (encoding exosome component 3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 (PCH1; MIM 607596). We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment, resulting in small brain size and poor motility, reminiscent of human clinical features, and these defects were largely rescued by co-injection with wild-type but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome core component gene that is responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration. 相似文献
325.
Roscioli T Kamsteeg EJ Buysse K Maystadt I van Reeuwijk J van den Elzen C van Beusekom E Riemersma M Pfundt R Vissers LE Schraders M Altunoglu U Buckley MF Brunner HG Grisart B Zhou H Veltman JA Gilissen C Mancini GM Delrée P Willemsen MA Ramadža DP Chitayat D Bennett C Sheridan E Peeters EA Tan-Sindhunata GM de Die-Smulders CE Devriendt K Kayserili H El-Hashash OA Stemple DL Lefeber DJ Lin YY van Bokhoven H 《Nature genetics》2012,44(5):581-585
Walker-Warburg syndrome (WWS) is an autosomal recessive multisystem disorder characterized by complex eye and brain abnormalities with congenital muscular dystrophy (CMD) and aberrant a-dystroglycan glycosylation. Here we report mutations in the ISPD gene (encoding isoprenoid synthase domain containing) as the second most common cause of WWS. Bacterial IspD is a nucleotidyl transferase belonging to a large glycosyltransferase family, but the role of the orthologous protein in chordates is obscure to date, as this phylum does not have the corresponding non-mevalonate isoprenoid biosynthesis pathway. Knockdown of ispd in zebrafish recapitulates the human WWS phenotype with hydrocephalus, reduced eye size, muscle degeneration and hypoglycosylated a-dystroglycan. These results implicate ISPD in a-dystroglycan glycosylation in maintaining sarcolemma integrity in vertebrates. 相似文献
326.
Bis JC DeCarli C Smith AV van der Lijn F Crivello F Fornage M Debette S Shulman JM Schmidt H Srikanth V Schuur M Yu L Choi SH Sigurdsson S Verhaaren BF DeStefano AL Lambert JC Jack CR Struchalin M Stankovich J Ibrahim-Verbaas CA Fleischman D Zijdenbos A den Heijer T Mazoyer B Coker LH Enzinger C Danoy P Amin N Arfanakis K van Buchem MA de Bruijn RF Beiser A Dufouil C Huang J Cavalieri M Thomson R Niessen WJ Chibnik LB Gislason GK Hofman A Pikula A Amouyel P Freeman KB Phan TG Oostra BA Stein JL 《Nature genetics》2012,44(5):545-551
Aging is associated with reductions in hippocampal volume that are accelerated by Alzheimer's disease and vascular risk factors. Our genome-wide association study (GWAS) of dementia-free persons (n = 9,232) identified 46 SNPs at four loci with P values of <4.0 × 10(-7). In two additional samples (n = 2,318), associations were replicated at 12q14 within MSRB3-WIF1 (discovery and replication; rs17178006; P = 5.3 × 10(-11)) and at 12q24 near HRK-FBXW8 (rs7294919; P = 2.9 × 10(-11)). Remaining associations included one SNP at 2q24 within DPP4 (rs6741949; P = 2.9 × 10(-7)) and nine SNPs at 9p33 within ASTN2 (rs7852872; P = 1.0 × 10(-7)); along with the chromosome 12 associations, these loci were also associated with hippocampal volume (P < 0.05) in a third younger, more heterogeneous sample (n = 7,794). The SNP in ASTN2 also showed suggestive association with decline in cognition in a largely independent sample (n = 1,563). These associations implicate genes related to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8) and neuronal migration (ASTN2), as well as enzymes targeted by new diabetes medications (DPP4), indicating new genetic influences on hippocampal size and possibly the risk of cognitive decline and dementia. 相似文献
327.
S Peña-Llopis S Vega-Rubín-de-Celis A Liao N Leng A Pavía-Jiménez S Wang T Yamasaki L Zhrebker S Sivanand P Spence L Kinch T Hambuch S Jain Y Lotan V Margulis AI Sagalowsky PB Summerour W Kabbani SW Wong N Grishin M Laurent XJ Xie CD Haudenschild MT Ross DR Bentley P Kapur J Brugarolas 《Nature genetics》2012,44(9):1072
328.
Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm 总被引:2,自引:0,他引:2
ME Lindsay D Schepers NA Bolar JJ Doyle E Gallo J Fert-Bober MJ Kempers EK Fishman Y Chen L Myers D Bjeda G Oswald AF Elias HP Levy BM Anderlid MH Yang EM Bongers J Timmermans AC Braverman N Canham GR Mortier HG Brunner PH Byers J Van Eyk L Van Laer HC Dietz BL Loeys 《Nature genetics》2012,44(8):922-927
Loeys-Dietz syndrome (LDS) associates with a tissue signature for high transforming growth factor (TGF)-β signaling but is often caused by heterozygous mutations in genes encoding positive effectors of TGF-β signaling, including either subunit of the TGF-β receptor or SMAD3, thereby engendering controversy regarding the mechanism of disease. Here, we report heterozygous mutations or deletions in the gene encoding the TGF-β2 ligand for a phenotype within the LDS spectrum and show upregulation of TGF-β signaling in aortic tissue from affected individuals. Furthermore, haploinsufficient Tgfb2(+/-) mice have aortic root aneurysm and biochemical evidence of increased canonical and noncanonical TGF-β signaling. Mice that harbor both a mutant Marfan syndrome (MFS) allele (Fbn1(C1039G/+)) and Tgfb2 haploinsufficiency show increased TGF-β signaling and phenotypic worsening in association with normalization of TGF-β2 expression and high expression of TGF-β1. Taken together, these data support the hypothesis that compensatory autocrine and/or paracrine events contribute to the pathogenesis of TGF-β-mediated vasculopathies. 相似文献
329.
RK Koenekoop H Wang J Majewski X Wang I Lopez H Ren Y Chen Y Li GA Fishman M Genead J Schwartzentruber N Solanki EI Traboulsi J Cheng CV Logan M McKibbin BE Hayward DA Parry CA Johnson M Nageeb;Finding of Rare Disease Genes 《Nature genetics》2012,44(9):1035-1039
Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wld(s)) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder. 相似文献
330.
Fast and accurate genotype imputation in genome-wide association studies through pre-phasing 总被引:2,自引:0,他引:2
The 1000 Genomes Project and disease-specific sequencing efforts are producing large collections of haplotypes that can be used as reference panels for genotype imputation in genome-wide association studies (GWAS). However, imputing from large reference panels with existing methods imposes a high computational burden. We introduce a strategy called 'pre-phasing' that maintains the accuracy of leading methods while reducing computational costs. We first statistically estimate the haplotypes for each individual within the GWAS sample (pre-phasing) and then impute missing genotypes into these estimated haplotypes. This reduces the computational cost because (i) the GWAS samples must be phased only once, whereas standard methods would implicitly repeat phasing with each reference panel update, and (ii) it is much faster to match a phased GWAS haplotype to one reference haplotype than to match two unphased GWAS genotypes to a pair of reference haplotypes. We implemented our approach in the MaCH and IMPUTE2 frameworks, and we tested it on data sets from the Wellcome Trust Case Control Consortium 2 (WTCCC2), the Genetic Association Information Network (GAIN), the Women's Health Initiative (WHI) and the 1000 Genomes Project. This strategy will be particularly valuable for repeated imputation as reference panels evolve. 相似文献