首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   0篇
  国内免费   2篇
教育与普及   1篇
现状及发展   60篇
研究方法   14篇
综合类   110篇
自然研究   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2008年   7篇
  2007年   9篇
  2006年   7篇
  2005年   8篇
  2004年   15篇
  2003年   12篇
  2002年   8篇
  2001年   10篇
  2000年   9篇
  1999年   5篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   5篇
  1975年   6篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   2篇
  1969年   4篇
  1968年   2篇
  1967年   3篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
31.
32.
Circulating kinin in patients with bronchial asthma   总被引:7,自引:0,他引:7  
  相似文献   
33.
Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A to form lasalocid A. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue to provide the first atomic structure-to our knowledge-of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis.  相似文献   
34.
Shugoshin collaborates with protein phosphatase 2A to protect cohesin   总被引:1,自引:0,他引:1  
Sister chromatid cohesion, mediated by a complex called cohesin, is crucial--particularly at centromeres--for proper chromosome segregation in mitosis and meiosis. In animal mitotic cells, phosphorylation of cohesin promotes its dissociation from chromosomes, but centromeric cohesin is protected by shugoshin until kinetochores are properly captured by the spindle microtubules. However, the mechanism of shugoshin-dependent protection of cohesin is unknown. Here we find a specific subtype of serine/threonine protein phosphatase 2A (PP2A) associating with human shugoshin. PP2A colocalizes with shugoshin at centromeres and is required for centromeric protection. Purified shugoshin complex has an ability to reverse the phosphorylation of cohesin in vitro, suggesting that dephosphorylation of cohesin is the mechanism of protection at centromeres. Meiotic shugoshin of fission yeast also associates with PP2A, with both proteins collaboratively protecting Rec8-containing cohesin at centromeres. Thus, we have revealed a conserved mechanism of centromeric protection of eukaryotic chromosomes in mitosis and meiosis.  相似文献   
35.
<正>Different planning methods have been applied in private and public infrastructure projects,which resulted in different approval procedures and querry about impartiality.However,planning methods of infrastructure projects are seldom investigated up to now.The authors propose a proper project planning method which is applicable to all kinds of infrastructure projects with various fund origins.The project planning method includes a comprehensive planning framework and a six-step planning process.The financial indicator,i.e.,self-reimbursement ratio is introduced for the proper division of financial obligation between government and project company.  相似文献   
36.
Glial cells express N-CAM/D2-CAM-like polypeptides in vitro   总被引:6,自引:0,他引:6  
The joining together of neurites to form fascicles and the growth of axons along glial surfaces during early development suggest that neurone-neurone and neurone-glial adhesion interactions are of considerable importance for defining nerve tracts. In vitro studies have indicated that adhesion between neurones involves a glycoprotein that has been independently studied under the names of N-CAM (for neural cell adhesion molecule), D2-CAM and BSP-2 (refs 10, 11). As N-CAM/D2-CAM appears to be a homophilic ligand that binds to N-CAM/D2-CAM polypeptide on adjacent cells, this glycoprotein is potentially important in adhesion interactions between any two N-CAM/D2-CAM-expressing cells. While it has been suggested that neurone-glial adhesion involves molecules other than N-CAM/D2-CAM, it is known that N-CAM/D2-CAM antigenic determinants are expressed by glial cells in vivo and that injection of anti-N-CAM antibodies into the eye-cup of chick embryos disrupts normal patterns of neuritic apposition to glial endfeet in the developing optic stalk. Do the molecules expressed by glia share restricted antigenic determinants, or binding domains, with N-CAM/D2-CAM, or are N-CAM/D2-CAM polypeptides expressed by glia? Here we present immunocytochemical evidence which suggests that all classes of macroglia express N-CAM/D2-CAM antigenic determinants on their surfaces and immunochemical analyses which indicate that the molecules expressed by purified astrocytes are closely similar, or identical, to at least some forms of N-CAM/D2-CAM obtained from whole brain or purified neurones. However, our results also suggest that different N-CAM/D2-CAM polypeptides may be separately expressed by neurones and astrocytes.  相似文献   
37.
While bile acids (BAs) have long been known to be essential in dietary lipid absorption and cholesterol catabolism, in recent years an important role for BAs as signalling molecules has emerged. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor (GPCR) TGR5 and activate nuclear hormone receptors such as farnesoid X receptor alpha (FXR-alpha; NR1H4). FXR-alpha regulates the enterohepatic recycling and biosynthesis of BAs by controlling the expression of genes such as the short heterodimer partner (SHP; NR0B2) that inhibits the activity of other nuclear receptors. The FXR-alpha-mediated SHP induction also underlies the downregulation of the hepatic fatty acid and triglyceride biosynthesis and very-low-density lipoprotein production mediated by sterol-regulatory-element-binding protein 1c. This indicates that BAs might be able to function beyond the control of BA homeostasis as general metabolic integrators. Here we show that the administration of BAs to mice increases energy expenditure in brown adipose tissue, preventing obesity and resistance to insulin. This novel metabolic effect of BAs is critically dependent on induction of the cyclic-AMP-dependent thyroid hormone activating enzyme type 2 iodothyronine deiodinase (D2) because it is lost in D2-/- mice. Treatment of brown adipocytes and human skeletal myocytes with BA increases D2 activity and oxygen consumption. These effects are independent of FXR-alpha, and instead are mediated by increased cAMP production that stems from the binding of BAs with the G-protein-coupled receptor TGR5. In both rodents and humans, the most thermogenically important tissues are specifically targeted by this mechanism because they coexpress D2 and TGR5. The BA-TGR5-cAMP-D2 signalling pathway is therefore a crucial mechanism for fine-tuning energy homeostasis that can be targeted to improve metabolic control.  相似文献   
38.
Perlecan is essential for cartilage and cephalic development.   总被引:19,自引:0,他引:19  
Perlecan, a large, multi-domain, heparan sulfate proteoglycan originally identified in basement membrane, interacts with extracellular matrix proteins, growth factors and receptors, and influences cellular signalling. Perlecan is present in a variety of basement membranes and in other extracellular matrix structures. We have disrupted the gene encoding perlecan (Hspg2) in mice. Approximately 40% of Hspg2-/- mice died at embryonic day (E) 10.5 with defective cephalic development. The remaining Hspg2-/- mice died just after birth with skeletal dysplasia characterized by micromelia with broad and bowed long bones, narrow thorax and craniofacial abnormalities. Only 6% of Hspg2-/- mice developed both exencephaly and chondrodysplasia. Hspg2-/- cartilage showed severe disorganization of the columnar structures of chondrocytes and defective endochondral ossification. Hspg2-/- cartilage matrix contained reduced and disorganized collagen fibrils and glycosaminoglycans, suggesting that perlecan has an important role in matrix structure. In Hspg2-/- cartilage, proliferation of chondrocytes was reduced and the prehypertrophic zone was diminished. The abnormal phenotypes of the Hspg2-/- skeleton are similar to those of thanatophoric dysplasia (TD) type I, which is caused by activating mutations in FGFR3 (refs 7, 8, 9), and to those of Fgfr3 gain-of-function mice. Our findings suggest that these molecules affect similar signalling pathways.  相似文献   
39.
Ohmoto H  Watanabe Y  Kumazawa K 《Nature》2004,429(6990):395-399
It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before approximately 2.2 billion years (Gyr) ago. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO3) in some pre-2.2-Gyr palaeosols to atmospheric CO2 concentrations that would have been too low to have provided the necessary greenhouse effect. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO2 concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O2 concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe3+)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H2-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO2 concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO2 alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号