首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
系统科学   1篇
理论与方法论   9篇
现状及发展   7篇
研究方法   4篇
综合类   18篇
自然研究   6篇
  2021年   1篇
  2019年   1篇
  2018年   6篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
41.
Macroscopic quantum phenomena such as high-temperature superconductivity, colossal magnetoresistance, ferrimagnetism and ferromagnetism arise from a delicate balance of different interactions among electrons, phonons and spins on the nanoscale. The study of the interplay among these various degrees of freedom in strongly coupled electron-lattice systems is thus crucial to their understanding and for optimizing their properties. Charge-density-wave (CDW) materials, with their inherent modulation of the electron density and associated periodic lattice distortion, represent ideal model systems for the study of such highly cooperative phenomena. With femtosecond time-resolved techniques, it is possible to observe these interactions directly by abruptly perturbing the electronic distribution while keeping track of energy relaxation pathways and coupling strengths among the different subsystems. Numerous time-resolved experiments have been performed on CDWs, probing the dynamics of the electronic subsystem. However, the dynamics of the periodic lattice distortion have been only indirectly inferred. Here we provide direct atomic-level information on the structural dynamics by using femtosecond electron diffraction to study the quasi two-dimensional CDW system 1T-TaS(2). Effectively, we have directly observed the atomic motions that result from the optically induced change in the electronic spatial distribution. The periodic lattice distortion, which has an amplitude of ~0.1??, is suppressed by about 20% on a timescale (~250 femtoseconds) comparable to half the period of the corresponding collective mode. These highly cooperative, electronically driven atomic motions are accompanied by a rapid electron-phonon energy transfer (~350 femtoseconds) and are followed by fast recovery of the CDW (~4 picoseconds). The degree of cooperativity in the observed structural dynamics is remarkable and illustrates the importance of obtaining atomic-level perspectives of the processes directing the physics of strongly correlated systems.  相似文献   
42.
Reverse engineering of regulatory networks in human B cells   总被引:1,自引:0,他引:1  
Cellular phenotypes are determined by the differential activity of networks linking coregulated genes. Available methods for the reverse engineering of such networks from genome-wide expression profiles have been successful only in the analysis of lower eukaryotes with simple genomes. Using a new method called ARACNe (algorithm for the reconstruction of accurate cellular networks), we report the reconstruction of regulatory networks from expression profiles of human B cells. The results are suggestive a hierarchical, scale-free network, where a few highly interconnected genes (hubs) account for most of the interactions. Validation of the network against available data led to the identification of MYC as a major hub, which controls a network comprising known target genes as well as new ones, which were biochemically validated. The newly identified MYC targets include some major hubs. This approach can be generally useful for the analysis of normal and pathologic networks in mammalian cells.  相似文献   
43.
44.
The Fifth World Parks Congress in Durban, South Africa, announced in September 2003 that the global network of protected areas now covers 11.5% of the planet's land surface. This surpasses the 10% target proposed a decade earlier, at the Caracas Congress, for 9 out of 14 major terrestrial biomes. Such uniform targets based on percentage of area have become deeply embedded into national and international conservation planning. Although politically expedient, the scientific basis and conservation value of these targets have been questioned. In practice, however, little is known of how to set appropriate targets, or of the extent to which the current global protected area network fulfils its goal of protecting biodiversity. Here, we combine five global data sets on the distribution of species and protected areas to provide the first global gap analysis assessing the effectiveness of protected areas in representing species diversity. We show that the global network is far from complete, and demonstrate the inadequacy of uniform--that is, 'one size fits all'--conservation targets.  相似文献   
45.
The retinoblastoma (Rb) gene was the first tumour suppressor identified. Inactivation of Rb in mice results in unscheduled cell proliferation, apoptosis and widespread developmental defects, leading to embryonic death by day 14.5 (refs 2-4). However, the actual cause of the embryonic lethality has not been fully investigated. Here we show that loss of Rb leads to excessive proliferation of trophoblast cells and a severe disruption of the normal labyrinth architecture in the placenta. This is accompanied by a decrease in vascularization and a reduction in placental transport function. We used two complementary techniques-tetraploid aggregation and conditional knockout strategies-to demonstrate that Rb-deficient embryos supplied with a wild-type placenta can be carried to term, but die soon after birth. Most of the neurological and erythroid abnormalities thought to be responsible for the embryonic lethality of Rb-null animals were virtually absent in rescued Rb-null pups. These findings identify and define a key function of Rb in extra-embryonic cell lineages that is required for embryonic development and viability, and provide a mechanism for the cell autonomous versus non-cell autonomous roles of Rb in development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号