首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1024篇
  免费   0篇
系统科学   13篇
教育与普及   1篇
理论与方法论   19篇
现状及发展   366篇
研究方法   169篇
综合类   449篇
自然研究   7篇
  2018年   9篇
  2017年   11篇
  2016年   12篇
  2014年   11篇
  2013年   10篇
  2012年   58篇
  2011年   72篇
  2010年   26篇
  2009年   6篇
  2008年   38篇
  2007年   52篇
  2006年   55篇
  2005年   53篇
  2004年   30篇
  2003年   28篇
  2002年   41篇
  2001年   32篇
  2000年   41篇
  1999年   34篇
  1992年   31篇
  1991年   10篇
  1990年   9篇
  1989年   8篇
  1988年   9篇
  1987年   18篇
  1986年   15篇
  1985年   23篇
  1984年   13篇
  1983年   9篇
  1982年   7篇
  1981年   8篇
  1980年   10篇
  1979年   20篇
  1978年   14篇
  1977年   12篇
  1976年   11篇
  1975年   8篇
  1974年   11篇
  1973年   12篇
  1972年   14篇
  1971年   15篇
  1970年   14篇
  1969年   12篇
  1968年   9篇
  1967年   11篇
  1966年   8篇
  1964年   6篇
  1960年   4篇
  1956年   6篇
  1947年   4篇
排序方式: 共有1024条查询结果,搜索用时 15 毫秒
111.
Celiac disease is probably the best-understood immune-related disorder. The disease presents in the small intestine and results from the interplay between multiple genes and gluten, the triggering environmental factor. Although HLA class II genes explain 40% of the heritable risk, non-HLA genes accounting for most of the familial clustering have not yet been identified. Here we report significant and replicable association (P = 2.1 x 10(-6)) to a common variant located in intron 28 of the gene myosin IXB (MYO9B), which encodes an unconventional myosin molecule that has a role in actin remodeling of epithelial enterocytes. Individuals homozygous with respect to the at-risk allele have a 2.3-times higher risk of celiac disease (P = 1.55 x 10(-5)). This result is suggestive of a primary impairment of the intestinal barrier in the etiology of celiac disease, which may explain why immunogenic gluten peptides are able to pass through the epithelial barrier.  相似文献   
112.
Fungal disease is an increasing problem in both agriculture and human health. Treatment of human fungal disease involves the use of chemical fungicides, which generally target the integrity of the fungal plasma membrane or cell wall. Chemical fungicides used for the treatment of plant disease, have more diverse mechanisms of action including inhibition of sterol biosynthesis, microtubule assembly and the mitochondrial respiratory chain. However, these treatments have limitations, including toxicity and the emergence of resistance. This has led to increased interest in the use of antimicrobial peptides for the treatment of fungal disease in both plants and humans. Antimicrobial peptides are a diverse group of molecules with differing mechanisms of action, many of which remain poorly understood. Furthermore, it is becoming increasingly apparent that stress response pathways are involved in the tolerance of fungi to both chemical fungicides and antimicrobial peptides. These signalling pathways such as the cell wall integrity and high-osmolarity glycerol pathway are triggered by stimuli, such as cell wall instability, changes in osmolarity and production of reactive oxygen species. Here we review stress signalling induced by treatment of fungi with chemical fungicides and antifungal peptides. Study of these pathways gives insight into how these molecules exert their antifungal effect and also into the mechanisms used by fungi to tolerate sub-lethal treatment by these molecules. Inactivation of stress response pathways represents a potential method of increasing the efficacy of antifungal molecules.  相似文献   
113.
Summary In the brain wall of different vertebrate species, ependymal cells of different type occur. These cells possess protuberances which protrude into the ventricle.Although cytologically these structures are all variations of one theme, they must at present be interpreted in different ways as regards function.Probably these cell types form a complex system for the regulation of the cerebrospinal fluid. It remains possible that one or more of these cell types act as light receptors.  相似文献   
114.
My review of Ike Kamphof’s “Webcams to Save Nature: Online Space as Affective and Ethical Space” focuses on the question how the engagement of the spectator of the described websites is temporally structured and how the discrepancy between the instantaneity of affective response and the duration of moral engagement is solved. I propose to draw on Alexander Nehamas’ philosophy of beauty as an in-between, bringing affect and ethics closer together.  相似文献   
115.
116.
The lymphocyte function-associated molecule LFA-1 (CD11a/CD18) plays a key part in lymphocyte adhesion. Lymphocytes do not adhere spontaneously; activation of protein kinase C (PKC) by phorbol esters, however, gives rise to strong LFA-1-dependent adhesion, indicating that activation of LFA-1 is required to induce cell adhesion. We have now investigated whether the functionally important CD2 and CD3 surface structures on T lymphocytes are involved in the activation of LFA-1. The stimulation of these molecules, which causes activation of PKC, strongly promoted LFA-1-dependent adhesion. Furthermore, we demonstrate by using cells from an LFA-1-deficient patient that this enhanced lymphocyte adhesion is caused by activation of the LFA-1 molecule and not by activation of its ligands. LFA-1 was persistently activated by triggering through CD2 but only transiently by triggering through CD3. We postulate that CD2 and CD3 can differentially regulate the affinity of LFA-1 for its ligands by modulating its molecular conformation through PKC-dependent mechanisms.  相似文献   
117.
Cancer predisposition in hereditary non-polyposis colon cancer (HNPCC) is caused by defects in DNA mismatch repair (MMR). Mismatch recognition is attributed to two heterodimeric protein complexes: MutSalpha (refs 2, 3, 4, 5), a dimer of MutS homologues MSH2 and MSH6; and MutSbeta (refs 2,7), a dimer of MSH2 and MSH3. These complexes have specific and redundant mismatch recognition capacity. Whereas MSH2 deficiency ablates the activity of both dimers, causing strong cancer predisposition in mice and men, loss of MSH3 or MSH6 (also known as GTBP) function causes a partial MMR defect. This may explain the rarity of MSH6 and absence of MSH3 germline mutations in HNPCC families. To test this, we have inactivated the mouse genes Msh3 (formerly Rep3 ) and Msh6 (formerly Gtmbp). Msh6-deficient mice were prone to cancer; most animals developed lymphomas or epithelial tumours originating from the skin and uterus but only rarely from the intestine. Msh3 deficiency did not cause cancer predisposition, but in an Msh6 -deficient background, loss of Msh3 accelerated intestinal tumorigenesis. Lymphomagenesis was not affected. Furthermore, mismatch-directed anti-recombination and sensitivity to methylating agents required Msh2 and Msh6, but not Msh3. Thus, loss of MMR functions specific to Msh2/Msh6 is sufficient for lymphoma development in mice, whereas predisposition to intestinal cancer requires loss of function of both Msh2/Msh6 and Msh2/Msh3.  相似文献   
118.
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号