首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1155篇
  免费   0篇
系统科学   13篇
教育与普及   2篇
理论与方法论   18篇
现状及发展   444篇
研究方法   174篇
综合类   498篇
自然研究   6篇
  2018年   10篇
  2017年   12篇
  2016年   11篇
  2014年   14篇
  2013年   10篇
  2012年   61篇
  2011年   76篇
  2010年   26篇
  2009年   7篇
  2008年   45篇
  2007年   56篇
  2006年   59篇
  2005年   58篇
  2004年   31篇
  2003年   31篇
  2002年   41篇
  2001年   34篇
  2000年   43篇
  1999年   39篇
  1992年   31篇
  1991年   11篇
  1990年   9篇
  1989年   10篇
  1988年   11篇
  1987年   19篇
  1986年   15篇
  1985年   27篇
  1984年   15篇
  1983年   13篇
  1982年   8篇
  1981年   9篇
  1980年   11篇
  1979年   23篇
  1978年   18篇
  1977年   13篇
  1976年   11篇
  1975年   13篇
  1974年   12篇
  1973年   14篇
  1972年   21篇
  1971年   19篇
  1970年   15篇
  1969年   14篇
  1968年   18篇
  1967年   15篇
  1966年   10篇
  1965年   9篇
  1964年   12篇
  1956年   6篇
  1947年   4篇
排序方式: 共有1155条查询结果,搜索用时 15 毫秒
941.
Autotaxin is a secreted cell motility-stimulating exo-phosphodiesterase with lysophospholipase D activity that generates bioactive lysophosphatidic acid. Lysophosphatidic acid has been implicated in various neural cell functions such as neurite remodeling, demyelination, survival and inhibition of axon growth. Here, we report on the in vivo expression of autotaxin in the brain during development and following neurotrauma. We found that autotaxin is expressed in the proliferating subventricular and choroid plexus epithelium during embryonic development. After birth, autotaxin is mainly found in white matter areas in the central nervous system. In the adult brain, autotaxin is solely expressed in leptomeningeal cells and oligodendrocyte precursor cells. Following neurotrauma, autotaxin is strongly up-regulated in reactive astrocytes adjacent to the lesion. The present study revealed the cellular distribution of autotaxin in the developing and lesioned brain and implies a function of autotaxin in oligodendrocyte precursor cells and brain injuries. Received 18 September 2006; received after revision 30 October 2006; accepted 4 December 2006  相似文献   
942.
Phosphatidylinositol 3-kinase (PI3-kinase) activity has been implicated in regulating cell cycle progression at distinct points in the cell cycle by preventing cell cycle arrest or apoptosis. In this study, the role of PI3-kinase activity during the entire G1 phase of the ongoing cell cycle was studied in Chinese hamster ovary (CHO) cells synchronized by mitotic shake-off. We show that inhibition of PI3-kinase activity during and 2 h after mitosis inhibited cell cycle progression into S phase. In the presence of the PI3-kinase inhibitor wortmannin or LY294002, cells were arrested during early G1 phase, leading to the expression of the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PI3-kinase activity is required for progression through the M/G1 phase. In the absence of PI3-kinase activity, cells are induced for apoptosis in this particular phase of the cell cycle. Received 7 September 2005; received after revision 26 October 2005; accepted 11 November 2005  相似文献   
943.
We describe a new autosomal recessive white matter disorder ('hypomyelination and congenital cataract') characterized by hypomyelination of the central and peripheral nervous system, progressive neurological impairment and congenital cataract. We identified mutations in five affected families, resulting in a deficiency of hyccin, a newly identified 521-amino acid membrane protein. Our study highlights the essential role of hyccin in central and peripheral myelination.  相似文献   
944.
Ferroptosis is a recently recognized caspase-independent form of regulated cell death that is characterized by the accumulation of lethal lipid ROS produced through iron-dependent lipid peroxidation. Considering that regulation of fatty acid metabolism is responsible for the membrane-resident pool of oxidizable fatty acids that undergo lipid peroxidation in ferroptotic processes, we examined the contribution of the key fatty acid metabolism enzyme, acyl-CoA synthetase long-chain family member 4 (ACSL4), in regulating ferroptosis. By using CRISPR/Cas9 technology, we found that knockout of Acsl4 in ferroptosis-sensitive murine and human cells conferred protection from erastin- and RSL3-induced cell death. In the same cell types, deletion of mixed lineage kinase domain-like (Mlkl) blocked susceptibility to necroptosis, as expected. Surprisingly, these studies also revealed ferroptosis and necroptosis are alternative, in that resistance to one pathway sensitized cells to death via the other pathway. These data suggest a mechanism by which one regulated necrosis pathway compensates for another when either ferroptosis or necroptosis is compromised. We verified the synergistic contributions of ferroptosis and necroptosis to tissue damage during acute organ failure in vivo. Interestingly, in the course of pathophysiological acute ischemic kidney injury, ACSL4 was initially upregulated and its expression level correlated with the severity of tissue damage. Together, our findings reveal ACSL4 to be a reliable biomarker of the emerging cell death modality of ferroptosis, which may also serve as a novel therapeutic target in preventing pathological cell death processes.  相似文献   
945.
Hypermethylation of SOCS genes is associated with many human cancers, suggesting a role as tumor suppressors. As adaptor molecules for ubiquitin ligases, SOCS proteins modulate turnover of numerous target proteins. Few SOCS targets identified so far have a direct role in cell cycle progression; the mechanism by which SOCS regulate the cell cycle thus remains largely unknown. Here we show that SOCS1 overexpression inhibits in vitro and in vivo expansion of human melanoma cells, and that SOCS1 associates specifically with Cdh1, triggering its degradation by the proteasome. Cells therefore show a G1/S transition defect, as well as a secondary blockade in mitosis and accumulation of cells in metaphase. SOCS1 expression correlated with a reduction in cyclin D/E levels and an increase in the tumor suppressor p19, as well as the CDK inhibitor p53, explaining the G1/S transition defect. As a result of Cdh1 degradation, SOCS1-expressing cells accumulated cyclin B1 and securin, as well as apparently inactive Cdc20, in mitosis. Levels of the late mitotic Cdh1 substrate Aurora A did not change. These observations comprise a hitherto unreported mechanism of SOCS1 tumor suppression, suggesting this molecule as a candidate for the design of new therapeutic strategies for human melanoma.  相似文献   
946.
947.
Assembly and disassembly of adhesion structures such as focal adhesions (FAs) and podosomes regulate cell adhesion and differentiation. On antigen-presenting dendritic cells (DCs), acquisition of a migratory and immunostimulatory phenotype depends on podosome dissolution by prostaglandin E(2) (PGE(2)). Whereas the effects of physico-chemical and topographical cues have been extensively studied on FAs, little is known about how podosomes respond to these signals. Here, we show that, unlike for FAs, podosome formation is not controlled by substrate physico-chemical properties. We demonstrate that cell adhesion is the only prerequisite for podosome formation and that substrate availability dictates podosome density. Interestingly, we show that DCs sense 3-dimensional (3-D) geometry by aligning podosomes along the edges of 3-D micropatterned surfaces. Finally, whereas on a 2-dimensional (2-D) surface PGE(2) causes a rapid increase in activated RhoA levels leading to fast podosome dissolution, 3-D geometric cues prevent PGE(2)-mediated RhoA activation resulting in impaired podosome dissolution even after prolonged stimulation. Our findings indicate that 2-D and 3-D geometric cues control the spatial organization of podosomes. More importantly, our studies demonstrate the importance of substrate dimensionality in regulating podosome dissolution and suggest that substrate dimensionality plays an important role in controlling DC activation, a key process in initiating immune responses.  相似文献   
948.
Tissue transglutaminase (tTG) is a multifunctional Ca2+-dependent enzyme, catalyzing protein crosslinking. The transient receptor potential vanilloid (TRPV) family of cation channels was recently shown to contribute to the regulation of TG activities in keratinocytes and hence skin barrier formation. In kidney, where active transcellular Ca2+ transport via TRPV5 predominates, the potential effect of tTG remains unknown. A multitude of factors regulate TRPV5, many secreted into the pro-urine and acting from the extracellular side. We detected tTG in mouse urine and in the apical medium of polarized cultures of rabbit connecting tubule and cortical collecting duct (CNT/CCD) cells. Extracellular application of tTG significantly reduced TRPV5 activity in human embryonic kidney cells transiently expressing the channel. Similarly, a strong inhibition of transepithelial Ca2+ transport was observed after apical application of purified tTG to polarized rabbit CNT/CCD cells. Furthermore, tTG promoted the aggregation of the plasma membrane-associated fraction of TRPV5. Using patch clamp analysis, we observed a reduction in the pore diameter after tTG treatment, suggesting distinct structural changes in TRPV5 upon crosslinking by tTG. As N-linked glycosylation of TRPV5 is a key step in regulating channel function, we determined the effect of tTG in the N-glycosylation-deficient TRPV5 mutant. In the absence of N-linked glycosylation, TRPV5 was insensitive to tTG. Taken together, these observations imply that tTG is a novel extracellular enzyme inhibiting the activity of TRPV5. The inhibition of TRPV5 occurs in an N-glycosylation-dependent manner, signifying a common final pathway by which distinct extracellular factors regulate channel activity.  相似文献   
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号