首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1072篇
  免费   0篇
  国内免费   2篇
系统科学   13篇
教育与普及   1篇
理论与方法论   23篇
现状及发展   372篇
研究方法   177篇
综合类   481篇
自然研究   7篇
  2020年   5篇
  2018年   9篇
  2017年   10篇
  2016年   12篇
  2015年   5篇
  2014年   12篇
  2013年   12篇
  2012年   63篇
  2011年   78篇
  2010年   28篇
  2009年   8篇
  2008年   43篇
  2007年   55篇
  2006年   64篇
  2005年   55篇
  2004年   33篇
  2003年   33篇
  2002年   45篇
  2001年   32篇
  2000年   41篇
  1999年   34篇
  1992年   31篇
  1991年   10篇
  1990年   9篇
  1989年   8篇
  1988年   9篇
  1987年   18篇
  1986年   15篇
  1985年   23篇
  1984年   13篇
  1983年   9篇
  1982年   7篇
  1981年   8篇
  1980年   10篇
  1979年   20篇
  1978年   14篇
  1977年   12篇
  1976年   11篇
  1975年   8篇
  1974年   11篇
  1973年   12篇
  1972年   14篇
  1971年   15篇
  1970年   14篇
  1969年   12篇
  1968年   9篇
  1967年   11篇
  1966年   8篇
  1964年   6篇
  1956年   6篇
排序方式: 共有1074条查询结果,搜索用时 15 毫秒
51.
Studies on identification, derivation and characterization of human stem cells in the last decade have led to high expectations in the field of regenerative medicine. Although it is clear that for successful stem cell-based therapy several obstacles have to be overcome, other opportunities lay ahead for the use of human stem cells. A more immediate application would be the development of human models for cell-type specific differentiation and disease in vitro. Cardiomyocytes can be generated from stem cells, which have been shown to follow similar molecular events of cardiac development in vivo. Furthermore, several monogenic cardiovascular diseases have been described, for which in vitro models in stem cells could be generated. Here, we will discuss the potential of human embryonic stem cells, cardiac stem cells and the recently described induced pluripotent stem cells as models for cardiac differentiation and disease. Received 07 August 2008; received after revision 26 September 2008; accepted 03 October 2008  相似文献   
52.
The aggregation and deposition of the amyloid-β peptide (Aβ) in the brain has been linked with neuronal death, which progresses in the diagnostic and pathological signs of Alzheimer’s disease (AD). The transition of an unstructured monomeric peptide into self-assembled and more structured aggregates is the crucial conversion from what appears to be a harmless polypeptide into a malignant form that causes synaptotoxicity and neuronal cell death. Despite efforts to identify the toxic form of Aβ, the development of effective treatments for AD is still limited by the highly transient and dynamic nature of interconverting forms of Aβ. The variability within the in vivo “pool” of different Aβ peptides is another complicating factor. Here we review the dynamical interplay between various components that influence the heterogeneous Aβ system, from intramolecular Aβ flexibility to intermolecular dynamics between various Aβ alloforms and external factors. The complex dynamics of Aβ contributes to the causative role of Aβ in the pathogenesis of AD.  相似文献   
53.
During the period 1860–1880, a number of physicists and mathematicians, including Maxwell, Stewart, Cournot and Boussinesq, used theories formulated in terms of physics to argue that the mind, the soul or a vital principle could have an impact on the body. This paper shows that what was primarily at stake for these authors was a concern about the irreducibility of life and the mind to physics, and that their theories can be regarded primarily as reactions to the law of conservation of energy, which was used among others by Helmholtz and Du Bois-Reymond as an argument against the possibility of vital and mental causes in physiology. In light of this development, Maxwell, Stewart, Cournot and Boussinesq showed that it was still possible to argue for the irreducibility of life and the mind to physics, through an appeal to instability or indeterminism in physics: if the body is an unstable or physically indeterministic system, an immaterial principle can act through triggering or directing motions in the body, without violating the laws of physics.  相似文献   
54.
55.
Schizophrenia is an etiologically heterogeneous psychiatric disease, which exists in familial and nonfamilial (sporadic) forms. Here, we examine the possibility that rare de novo copy number (CN) mutations with relatively high penetrance contribute to the genetic component of schizophrenia. We carried out a whole-genome scan and implemented a number of steps for finding and confirming CN mutations. Confirmed de novo mutations were significantly associated with schizophrenia (P = 0.00078) and were collectively approximately 8 times more frequent in sporadic (but not familial) cases with schizophrenia than in unaffected controls. In comparison, rare inherited CN mutations were only modestly enriched in sporadic cases. Our results suggest that rare de novo germline mutations contribute to schizophrenia vulnerability in sporadic cases and that rare genetic lesions at many different loci can account, at least in part, for the genetic heterogeneity of this disease.  相似文献   
56.
We identified a SNP in the DPP6 gene that is consistently strongly associated with susceptibility to amyotrophic lateral sclerosis (ALS) in different populations of European ancestry, with an overall P value of 5.04 x 10(-8) in 1,767 cases and 1,916 healthy controls and with an odds ratio of 1.30 (95% confidence interval (CI) of 1.18-1.43). Our finding is the first report of a genome-wide significant association with sporadic ALS and may be a target for future functional studies.  相似文献   
57.
58.
59.
Phytanic acid is a branched-chain fatty acid that accumulates in a variety of metabolic disorders. High levels of phytanic acid found in patients can exceed the millimolar range and lead to severe symptoms. Degradation of phytanic acid takes place by α-oxidation inside the peroxisome. A deficiency of its breakdown, leading to elevated levels, can result from either a general peroxisomal dysfunction or from a defect in one of the enzymes involved in α-oxidation. Research on Refsum disease, belonging to the latter group of disorders and characterized by a deficiency of the first enzyme of α-oxidation, has extended our knowledge of phytanic acid metabolism and pathology of the disease greatly over the past few decades. This review will centre on this research on phytanic acid: its origin, the mechanism by which its α-oxidation takes place, its role in human disease and the way it is produced from phytol. Received 4 October 2005; received after revision 24 February 2006; accepted 26 April 2006  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号