首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12642篇
  免费   24篇
  国内免费   43篇
系统科学   48篇
丛书文集   80篇
教育与普及   31篇
理论与方法论   57篇
现状及发展   5421篇
研究方法   679篇
综合类   6231篇
自然研究   162篇
  2013年   105篇
  2012年   232篇
  2011年   390篇
  2010年   104篇
  2009年   64篇
  2008年   221篇
  2007年   270篇
  2006年   251篇
  2005年   263篇
  2004年   229篇
  2003年   231篇
  2002年   230篇
  2001年   395篇
  2000年   394篇
  1999年   284篇
  1992年   259篇
  1991年   185篇
  1990年   209篇
  1989年   198篇
  1988年   206篇
  1987年   219篇
  1986年   173篇
  1985年   267篇
  1984年   180篇
  1983年   156篇
  1982年   171篇
  1981年   141篇
  1980年   176篇
  1979年   398篇
  1978年   303篇
  1977年   297篇
  1976年   257篇
  1975年   292篇
  1974年   317篇
  1973年   317篇
  1972年   354篇
  1971年   355篇
  1970年   439篇
  1969年   370篇
  1968年   389篇
  1967年   361篇
  1966年   325篇
  1965年   205篇
  1959年   107篇
  1958年   206篇
  1957年   140篇
  1956年   128篇
  1955年   106篇
  1954年   82篇
  1948年   85篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
921.
Many bioactive peptides must be amidated at their carboxy terminus to exhibit full activity. Surprisingly, the amides are not generated by a transamidation reaction. Instead, the hormones are synthesized from glycine-extended intermediates that are transformed into active amidated hormones by oxidative cleavage of the glycine N-C alpha bond. In higher organisms, this reaction is catalyzed by a single bifunctional enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The PAM gene encodes one polypeptide with two enzymes that catalyze the two sequential reactions required for amidation. Peptidylglycine alpha-hydroxylating monooxygenase (PHM; EC 1.14.17.3) catalyzes the stereospecific hydroxylation of the glycine alpha-carbon of all the peptidylglycine substrates. The second enzyme, peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL; EC 4.3.2.5), generates alpha-amidated peptide product and glyoxylate. PHM contains two redox-active copper atoms that, after reduction by ascorbate, catalyze the reduction of molecular oxygen for the hydroxylation of glycine-extended substrates. The structure of the catalytic core of rat PHM at atomic resolution provides a framework for understanding the broad substrate specificity of PHM, identifying residues critical for PHM activity, and proposing mechanisms for the chemical and electron-transfer steps in catalysis. Since PHM is homologous in sequence and mechanism to dopamine beta-monooxygenase (DBM; EC 1.14.17.1), the enzyme that converts dopamine to norepinephrine during catecholamine biosynthesis, these structural and mechanistic insights are extended to DBM.  相似文献   
922.
The primary structure of a lectin isolated from the red alga Bryothamnion triquetrum was established by combination of Edman degradation of sets of overlapping peptides and mass spectrometry. It contains 91 amino acids and two disulphide bonds. The primary structure of the B. triquetrum lectin does not show amino acid sequence similarity with known plant and animal lectin structures. Hence, this protein may be the paradigm of a novel lectin family.  相似文献   
923.
The source of intraspecies variation in the expression of heat shock proteins (HSPs) remains unresolved but could shed light on differential stress tolerance and disease susceptibility. This study investigated the influence of variable basal HSP synthesis on differential inducibility of HSP synthesis. Basal and heat-induced synthesis of the major HSP families in peripheral blood monocytes from healthy donors (n=42) were analysed using biometabolic labelling and densitometry. Basal Hsp70/Hsc70 synthesis and percentage induction of Hsp70/Hsc70 synthesis were significantly correlated (r=−0.57, p<0.0001), and described most accurately by an exponential decay equation (R=0.68, R2=0.46). This regression equation suggests that increasing levels of basal Hsp70/Hsc70 synthesis are accompanied byan exponential decrease in the percentage induction of Hsp70/Hsc70 synthesis. The model fits data from European and non-European population groups independently, although both coefficients in the regression equation were larger for non-Europeans. This implies population group as an additional factor influencing differential HSP expression. The differential inducibility of Hsp70/Hsc70 due to variable basal synthesis of Hsp70/Hsc70 and based upon population group may contribute to differential stress tolerance or disease susceptibility. Received 27 March 2000; received after revision 19 June 2000; accepted 20 June 2000  相似文献   
924.
925.
Vertebrate epithelial appendages are elaborate topological transformations of flat epithelia into complex organs that either protrude out of external (integument) and internal (oral cavity, gut) epithelia, or invaginate into the surrounding mesenchyme. Although they have specific structures and diverse functions, most epithelial appendages share similar developmental stages, including induction, morphogenesis, differentiation and cycling. The roles of the SHH pathway are analyzed in exemplary organs including feather, hair, tooth, tongue papilla, lung and foregut. SHH is not essential for induction and differentiation, but is involved heavily in morphogenetic processes including cell proliferation (size regulation), branching morphogenesis, mesenchymal condensation, fate determination (segmentation), polarizing activities and so on. Through differential activation of these processes by SHH in a spatiotemporal-specific fashion, organs of different shape and size are laid down. During evolution, new links of developmental pathways may occur and novel forms of epithelial appendages may emerge, upon which evolutionary selections can act. Sites of major variations have progressed from the body plan to the limb plan to the epithelial appendage plan. With its powerful morphogenetic activities, the SHH pathway would likely continue to play a major role in the evolution of novel epithelial appendages.  相似文献   
926.
927.
928.
929.
Human cerebellar activity reflecting an acquired internal model of a new tool   总被引:40,自引:0,他引:40  
Theories of motor control postulate that the brain uses internal models of the body to control movements accurately. Internal models are neural representations of how, for instance, the arm would respond to a neural command, given its current position and velocity. Previous studies have shown that the cerebellar cortex can acquire internal models through motor learning. Because the human cerebellum is involved in higher cognitive function as well as in motor control, we propose a coherent computational theory in which the phylogenetically newer part of the cerebellum similarly acquires internal models of objects in the external world. While human subjects learned to use a new tool (a computer mouse with a novel rotational transformation), cerebellar activity was measured by functional magnetic resonance imaging. As predicted by our theory, two types of activity were observed. One was spread over wide areas of the cerebellum and was precisely proportional to the error signal that guides the acquisition of internal models during learning. The other was confined to the area near the posterior superior fissure and remained even after learning, when the error levels had been equalized, thus probably reflecting an acquired internal model of the new tool.  相似文献   
930.
A constitutively open potassium channel formed by KCNQ1 and KCNE3   总被引:42,自引:0,他引:42  
Mutations in all four known KCNQ potassium channel alpha-subunit genes lead to human diseases. KCNQ1 (KvLQT1) interacts with the beta-subunit KCNE1 (IsK, minK) to form the slow, depolarization-activated potassium current I(Ks) that is affected in some forms of cardiac arrhythmia. Here we show that the novel beta-subunit KCNE3 markedly changes KCNQ1 properties to yield currents that are nearly instantaneous and depend linearly on voltage. It also suppresses the currents of KCNQ4 and HERG potassium channels. In the intestine, KCNQ1 and KCNE3 messenger RNAs colocalized in crypt cells. This localization and the pharmacology, voltage-dependence and stimulation by cyclic AMP of KCNQ1/KCNE3 currents indicate that these proteins may assemble to form the potassium channel that is important for cyclic AMP-stimulated intestinal chloride secretion and that is involved in secretory diarrhoea and cystic fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号